Dependence of direct aerosol radiative forcing on the optical properties of atmospheric aerosol and underlying surface

2013 ◽  
pp. 505-627
Author(s):  
Claudio Tomasi ◽  
Christian Lanconelli ◽  
Angelo Lupi ◽  
Mauro Mazzola
2018 ◽  
Vol 37 ◽  
pp. 03004
Author(s):  
Abdelouahid Tahiri ◽  
Mohamed Diouri

The atmospheric aerosol contributes to the definition of the climate with direct effect, the diffusion and absorption of solar and terrestrial radiations, and indirect, the cloud formation process where aerosols behave as condensation nuclei and alter the optical properties. Satellites and ground-based networks (solar photometers) allow the terrestrial aerosol observation and the determination of impact. Desert aerosol considered among the main types of tropospheric aerosols whose optical property uncertainties are still quite important. The analysis concerns the optical parameters recorded in 2015 at Ouarzazate solar photometric station (AERONET/PHOTONS network, http://aeronet.gsfc.nasa.gov/) close to Saharan zone. The daily average aerosol optical depthτaer at 0.5μm, are relatively high in summer and less degree in spring (from 0.01 to 1.82). Daily average of the Angstrom coefficients α vary between 0.01 and 1.55. The daily average of aerosol radiative forcing at the surface range between -150W/m2 and -10 W/m2 with peaks recorded in summer, characterized locally by large loads of desert aerosol in agreement with the advections of the Southeast of Morocco. Those recorded at the Top of the atmosphere show a variation from -74 W/m2 to +24 W/m2


2017 ◽  
Vol 10 (1) ◽  
pp. 433-452 ◽  
Author(s):  
Bjorn Stevens ◽  
Stephanie Fiedler ◽  
Stefan Kinne ◽  
Karsten Peters ◽  
Sebastian Rast ◽  
...  

Abstract. A simple plume implementation of the second version (v2) of the Max Planck Institute Aerosol Climatology, MACv2-SP, is described. MACv2-SP provides a prescription of anthropogenic aerosol optical properties and an associated Twomey effect. It was created to provide a harmonized description of post-1850 anthropogenic aerosol radiative forcing for climate modeling studies. MACv2-SP has been designed to be easy to implement, change and use, and thereby enable studies exploring the climatic effects of different patterns of aerosol radiative forcing, including a Twomey effect. MACv2-SP is formulated in terms of nine spatial plumes associated with different major anthropogenic source regions. The shape of the plumes is fit to the Max Planck Institute Aerosol Climatology, version 2, whose present-day (2005) distribution is anchored by surface-based observations. Two types of plumes are considered: one predominantly associated with biomass burning, the other with industrial emissions. These differ in the prescription of their annual cycle and in their optical properties, thereby implicitly accounting for different contributions of absorbing aerosol to the different plumes. A Twomey effect for each plume is prescribed as a change in the host model's background cloud-droplet population density using relationships derived from satellite data. Year-to-year variations in the amplitude of the plumes over the historical period (1850–2016) are derived by scaling the plumes with associated national emission sources of SO2 and NH3. Experiments using MACv2-SP are performed with the Max Planck Institute Earth System Model. The globally and annually averaged instantaneous and effective aerosol radiative forcings are estimated to be −0.6 and −0.5 W m−2, respectively. Forcing from aerosol–cloud interactions (the Twomey effect) offsets the reduction of clear-sky forcing by clouds, so that the net effect of clouds on the aerosol forcing is small; hence, the clear-sky forcing, which is more readily measurable, provides a good estimate of the total aerosol forcing.


2021 ◽  
Author(s):  
Yaowei Li ◽  
John Dykema ◽  
Frank Keutsch

<p>Model results suggest organic aerosol represents a significant fraction of total stratospheric aerosol radiative forcing, which in itself could represent as much as a quarter of global radiative forcing. Other model investigations suggest that the radiative influence of organic aerosols and dust must be included to obtain consistency with satellite measurements of stratospheric aerosols. <em>In situ</em> observations suggest that stratospheric aerosol composition is strongly vertically dependent and contains a significant organic component in the lower stratosphere. Laboratory studies suggest a range of possible values for the complex refractive index of organic aerosols in the stratosphere. The real part of the refractive index could vary over a range that brackets the value of the real refractive index for pure sulfuric acid/water aerosols. The imaginary part of the refractive index of the organic component is highly uncertain, suggesting aerosols that range from being purely refractive to significantly absorbing (eg, brown carbon). The mixing state of these mixed composition aerosols is also uncertain; depending on the complex refractive index of the organic component, morphological variation could have a significant influence on aerosol radiative properties. In this work we perform a sensitivity study of shortwave radiative forcing of stratospheric aerosols, examining the influence of different plausible values of complex refractive index and particle morphologies. <em>In situ</em> measurements of aerosol size and composition are used to represent the size distribution, vertical profile, and organic mass fraction for the computation of aerosol optical properties. These profiles of aerosol optical properties are used as inputs to a radiative transfer model to calculate profiles of shortwave fluxes and radiative heating rates for standard model atmospheres. The implications of the variations in aerosol optical depth and resulting radiative forcing are interpreted in terms of implications for satellite measurements of stratospheric radiative forcing. The various radiative forcing results and remote sensing implications for different scenarios of organic complex refractive index and morphology call for better understandings of the effects of chemical evolution and transport dynamics on the aerosol optical properties in the stratosphere.</p>


2004 ◽  
Vol 43 (12) ◽  
pp. 1799-1817 ◽  
Author(s):  
Maria João Costa ◽  
Ana Maria Silva ◽  
Vincenzo Levizzani

Abstract A method based on the synergistic use of low earth orbit (LEO) and geostationary earth orbit (GEO) satellite data for aerosol-type characterization, as well as aerosol optical thickness (AOT) retrieval and monitoring over the ocean, is presented. These properties are used for the estimation of the direct shortwave aerosol radiative forcing at the top of the atmosphere. The synergy serves the purpose of monitoring aerosol events at the GEO time and space scales while maintaining the accuracy level achieved with LEO instruments. Aerosol optical properties representative of the atmospheric conditions are obtained from the inversion of high-spectral-resolution measurements from the Global Ozone Monitoring Experiment (GOME). The aerosol optical properties are input for radiative transfer calculations for the retrieval of the AOT from GEO visible broadband measurements, avoiding the use of fixed aerosol models available in the literature. The retrieved effective aerosol optical properties represent an essential component for the aerosol radiative forcing assessment. A sensitivity analysis is also presented to quantify the effects that changes on the aerosol model may have on modeled results of spectral reflectance, AOT, and direct shortwave aerosol radiative forcing at the top of the atmosphere. The impact on modeled values of the physical assumptions on surface reflectance and vertical profiles of ozone and water vapor are analyzed. Results show that the aerosol model is the main factor influencing the investigated radiative variables. Results of the application of the method to several significant aerosol events, as well as their validation, are presented in a companion paper.


Sign in / Sign up

Export Citation Format

Share Document