Low Intensity Laser Irradiation Influence Proliferation of Mesenchymal Stem Cells: Comparison of Experimental Data to Intelligent Agent-Based Model Predictions

Author(s):  
Aya Sedky Adly ◽  
Mohamed H. Haggag ◽  
Mostafa-Sami M. Mostafa
Data ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 71 ◽  
Author(s):  
Diana Victoria Ramírez López ◽  
María Isabel Melo Escobar ◽  
Carlos A. Peña-Reyes ◽  
Álvaro J. Rojas Arciniegas ◽  
Paola Andrea Neuta Arciniegas

Regenerative medicine involves methods to control and modify normal tissue repair processes. Polymer and cell constructs are under research to create tissue that replaces the affected area in cardiac tissue after myocardial infarction (MI). The aim of the present study is to evaluate the behavior of differentiated and undifferentiated mesenchymal stem cells (MSCs) in vitro and in silico and to compare the results that both offer when it comes to the design process of biodevices for the treatment of infarcted myocardium in biomodels. To assess in vitro behavior, MSCs are isolated from rat bone marrow and seeded undifferentiated and differentiated in multiple scaffolds of a gelled biomaterial. Subsequently, cell behavior is evaluated by trypan blue and fluorescence microscopy, which showed that the cells presented high viability and low cell migration in the biomaterial. An agent-based model intended to reproduce as closely as possible the behavior of individual MSCs by simulating cellular-level processes was developed, where the in vitro results are used to identify parameters in the agent-based model that is developed, and which simulates cellular-level processes: Apoptosis, differentiation, proliferation, and migration. Thanks to the results obtained, suggestions for good results in the design and fabrication of the proposed scaffolds and how an agent-based model can be helpful for testing hypothesis are presented in the discussion. It is concluded that assessment of cell behavior through the observation of viability, proliferation, migration, inflammation reduction, and spatial composition in vitro and in silico, represents an appropriate strategy for scaffold engineering.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Bernard Mvula ◽  
Heidi Abrahamse

Stem cells have the ability to self-renew and differentiate into several specialised cells. Low intensity laser irradiation (LILI) has been shown to have positive effects on cells including adipose derived stem cells (ADSCs). Growth factors such as retinoic acid and transforming growth factor (TGF-β1) play significant roles in the differentiation of cells. This study aimed at investigating the role of LILI and growth factors on differentiation of adipose derived stem cells cocultured with smooth muscle cells (SMCs). The study used isolated human adipose derived stem cells and smooth muscle commercial cells (SKUT-1). The cells were cocultured directly in the ratio 1 : 1 using the established methods with and without growth factors (retinoic acid and TGF-β1) and then exposed to LILI at a wavelength of 636 nm with 5 J/cm2using a diode laser. The cellular proliferation and expression of the both cell type markers were assessed using optical density and flow cytometry at 24 h and 72 h. The study showed that LILI increased the proliferation of cocultured cells. The expression of the smooth muscle cell markers increased in the coculture groups that were exposed to LILI in the presence of growth factors while those of the ADSCs decreased.


2011 ◽  
Vol 6 (5) ◽  
pp. 695-698 ◽  
Author(s):  
Heidi Abrahamse

AbstractDevelopments in adult stem cell (ASC) potentiation have contributed to excitement in the field of stem cell-based therapy. The use of ASCs not only increases therapeutic treatment possibilities but successful use of multipotent cells for gene therapy has been demonstrated in animal models [1]. Concurrent ability of stem cells (SCs) to either contribute to disease development, as identified in cancer stem cells (CSCs), or to replace diseased tissue by induced differentiation using selected growth factors, has highlighted the intricate molecular and cellular mechanisms. Adipose derived stem cells (ADSCs) are capable of self-renewal and respond well to induced differentiation [2]. Auto-immunity and transplant rejection may become minor limitations when selective induction of immunological nonresponsiveness to specific antigens or tissues become possible using autologous cell sources [3]. CSCs initiate tumorogenesis, can generate differentiated daughter cells or undergo self-renewal while thought to instigate tumour regeneration post-treatment. Therapy targeting CSCs has failed to provide feasible alternatives to conventional cancer treatment. Low intensity laser irradiation (LILI), induce a biostimulatory response in several tissue types in addition to a dose-response effect to the detriment of cellular degeneration. Potential of LILI to induce CSC differentiation and subsequent cytotoxic therapy to prevent tumour regeneration is explored in this mini-review.


Sign in / Sign up

Export Citation Format

Share Document