The Adaptive Immune Response to Respiratory Syncytial Virus

Author(s):  
Steven M. Varga ◽  
Thomas J. Braciale
2019 ◽  
Vol 93 (22) ◽  
Author(s):  
Cyril Le Nouën ◽  
Philippa Hillyer ◽  
Eric Levenson ◽  
Craig Martens ◽  
Ronald L. Rabin ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) infects and causes disease in infants and reinfects with reduced disease throughout life without significant antigenic change. In contrast, reinfection by influenza A virus (IAV) largely requires antigenic change. The adaptive immune response depends on antigen presentation by dendritic cells (DC), which may be too immature in young infants to induce a fully protective immune response against RSV reinfections. We therefore compared the ability of RSV and IAV to activate primary human cord blood (CB) and adult blood (AB) myeloid DC (mDC). While RSV and IAV infected with similar efficiencies, RSV poorly induced maturation and cytokine production in CB and AB mDC. This difference between RSV and IAV was more profound in CB mDC. While IAV activated CB mDC to some extent, RSV did not induce CB mDC to increase the maturation markers CD38 and CD86 or CCR7, which directs DC migration to lymphatic tissue. Low CCR7 surface expression was associated with high expression of CCR5, which keeps DC in inflamed peripheral tissues. To evaluate a possible inhibition by RSV, we subjected RSV-inoculated AB mDC to secondary IAV inoculation. While RSV-inoculated AB mDC responded to secondary IAV inoculation by efficiently upregulating activation markers and cytokine production, IAV-induced CCR5 downregulation was slightly inhibited in cells exhibiting robust RSV infection. Thus, suboptimal stimulation and weak and mostly reversible inhibition seem to be responsible for inefficient mDC activation by RSV. The inefficient mDC stimulation and immunological immaturity in young infants may contribute to reduced immune responses and incomplete protection against RSV reinfection. IMPORTANCE Respiratory syncytial virus (RSV) causes disease early in life and can reinfect symptomatically throughout life without undergoing significant antigenic change. In contrast, reinfection by influenza A virus (IAV) requires antigenic change. The adaptive immune response depends on antigen presentation by dendritic cells (DC). We used myeloid DC (mDC) from cord blood and adult blood donors to evaluate whether immunological immaturity contributes to the inability to mount a fully protective immune response to RSV. While IAV induced some activation and chemokine receptor switching in cord blood mDC, RSV did not. This appeared to be due to a lack of activation and a weak and mostly reversible inhibition of DC functions. Both viruses induced a stronger activation of mDC from adults than mDC from cord blood. Thus, inefficient stimulation of mDC by RSV and immunological immaturity may contribute to reduced immune responses and increased susceptibility to RSV disease and reinfection in young infants.


2019 ◽  
Vol 16 (160) ◽  
pp. 20190389 ◽  
Author(s):  
Darren Wethington ◽  
Olivia Harder ◽  
Karthik Uppulury ◽  
William C. L. Stewart ◽  
Phylip Chen ◽  
...  

Respiratory syncytial virus (RSV) is a common virus that can have varying effects ranging from mild cold-like symptoms to mortality depending on the age and immune status of the individual. We combined mathematical modelling using ordinary differential equations (ODEs) with measurement of RSV infection kinetics in primary well-differentiated human bronchial epithelial cultures in vitro and in immunocompetent and immunosuppressed cotton rats to glean mechanistic details that underlie RSV infection kinetics in the lung. Quantitative analysis of viral titre kinetics in our mathematical model showed that the elimination of infected cells by the adaptive immune response generates unique RSV titre kinetic features including a faster timescale of viral titre clearance than viral production, and a monotonic decrease in the peak RSV titre with decreasing inoculum dose. Parameter estimation in the ODE model using a nonlinear mixed effects approach revealed a very low rate (average single-cell lifetime > 10 days) of cell lysis by RSV before the adaptive immune response is initiated. Our model predicted negligible changes in the RSV titre kinetics at early times post-infection (less than 5 dpi) but a slower decay in RSV titre in immunosuppressed cotton rats compared to that in non-suppressed cotton rats at later times (greater than 5 dpi) in silico. These predictions were in excellent agreement with the experimental results. Our combined approach quantified the importance of the adaptive immune response in suppressing RSV infection in cotton rats, which could be useful in testing RSV vaccine candidates.


2005 ◽  
Vol 79 (10) ◽  
pp. 5971-5978 ◽  
Author(s):  
Rene Alvarez ◽  
Ralph A. Tripp

ABSTRACT Human metapneumovirus (HMPV), recently identified in isolates from children hospitalized with acute respiratory tract illness, is associated with clinical diagnosis of pneumonia, asthma exacerbation, and acute bronchiolitis in young children. HMPV has been shown to cocirculate with respiratory syncytial virus (RSV) and mediate clinical disease features similarly to RSV. Little is known regarding the pathophysiology or immune response associated with HMPV infection; thus, animal models are needed to better understand the mechanisms of immunity and disease pathogenesis associated with infection. In this study, we examine features of the innate and adaptive immune response to HMPV infection in a BALB/c mouse model. Primary HMPV infection elicits weak innate and aberrant adaptive immune responses characterized by induction of a Th2-type cytokine response at later stages of infection that coincides with increased interleukin-10 expression and persistent virus replication in the lung. Examination of the cytotoxic T lymphocyte and antibody response to HMPV infection revealed a delayed response, but passive transfer of HMPV-specific antibodies provided considerable protection. These features are consistent with virus persistence and indicate that the immune response to HMPV is unique compared to the immune response to RSV.


2018 ◽  
Author(s):  
Darren Wethington ◽  
Olivia Harder ◽  
Karthik Uppulury ◽  
William C. L. Stewart ◽  
Phylip Chen ◽  
...  

AbstractRespiratory syncytial virus (RSV) is a common virus that can have varying effects ranging from mild cold-like symptoms to mortality depending on the age and immune status of the individual. We combined mathematical modeling using ordinary differential equations (ODEs) with measurement of RSV infection kinetics in primary well differentiated human airway epithelial (HAE) cultures in vitro and in immunocompetent and immunosuppressed cotton rats to glean mechanistic details that underlie RSV infection kinetics in the lung. Quantitative analysis of viral titer kinetics in our mathematical model showed that the elimination of infected cells by the adaptive immune response generates unique RSV titer kinetic features including a faster time scale of viral titer clearance than viral production, and a monotonic decrease in the peak RSV titer with decreasing inoculum dose. Parameter estimation in the ODE model using a non-linear mixed effects approach revealed a very low rate (average single cell lifetime > 10 days) of cell lysis by RSV before the adaptive immune response is initiated. Our model predicted negligible changes in the RSV titer kinetics on earlier days (< 5 d.p.i) but a slower decay in RSV titer in immunosuppressed cotton rats compared to that in non-suppressed cotton rats at later days (>5 d.p.i) in silico. These predictions were in excellent agreement with the experimental results. Our combined approach quantified the importance of the adaptive immune response in suppressing RSV infection in cotton rats, which could be useful in testing RSV vaccine candidates.ImportanceA major difficulty in developing vaccines against RSV infection is our rudimentary understanding of the mechanisms that underlie RSV infection. We addressed this challenge by developing a mechanistic computational model with predictive powers for describing RSV infection kinetics in cotton rats. The model was constructed synergistically with in vitro and in vivo measurements. The combined framework determined an important role for CD8+ T cells responses in reducing RSV titers in cotton rats. The framework can be used to design future experiments to elucidate mechanisms underlying RSV infection and test outcomes for potential vaccine candidates. In addition, estimation of the model parameters provides quantitative values for parameters of biological and clinical interest such as the replication rate of RSV, the death rate of infected cells, and the average number of new infections initiated by a single infected cell.


Viruses ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 102 ◽  
Author(s):  
Hi Eun Jung ◽  
Tae Hoon Kim ◽  
Heung Kyu Lee

Respiratory syncytial virus (RSV) is a major cause of severe respiratory disease in infants and the elderly. The socioeconomic burden of RSV infection is substantial because it leads to serious respiratory problems, subsequent hospitalization, and mortality. Despite its clinical significance, a safe and effective vaccine is not yet available to prevent RSV infection. Upon RSV infection, lung dendritic cells (DCs) detecting pathogens migrate to the lymph nodes and activate the adaptive immune response. Therefore, RSV has evolved various immunomodulatory strategies to inhibit DC function. Due to the capacity of RSV to modulate defense mechanisms in hosts, RSV infection results in inappropriate activation of immune responses resulting in immunopathology and frequent reinfection throughout life. This review discusses how DCs recognize invading RSV and induce adaptive immune responses, as well as the regulatory mechanisms mediated by RSV to disrupt DC functions and ultimately avoid host defenses.


2006 ◽  
Vol 22 (5-6) ◽  
pp. 303-308 ◽  
Author(s):  
Beena Puthothu ◽  
Johannes Forster ◽  
Andrea Heinzmann ◽  
Marcus Krueger

Respiratory syncytial virus (RSV) is the most common viral respiratory pathogen during infancy world wide. It induces innate and adaptive immune response in host cells. The toll like receptor 4 (TLR4)/CD14 complex is particularly important for the initiation of an innate immune response to RSV. Thus we were interested whether an association exists between severe RSV associated diseases and polymorphisms within TLR4 and CD14.We genotyped the CD14 promotor polymorphism -C159T and the two common TLR4 amino acid variants (D259G, and T359I) in 131 infants with severe RSV associated diseases and 270 controls. Statistical analyses of single polymorphisms made use of the Armitage’s trend test, haplotypes were calculated by FAMHAP, FASTEHPLUS and Arlequin.All polymorphisms were in Hardy Weinberg Equilibrium. We found marginal association between amino acid exchange D259G in TLR4 with RSV infectionp= 0.0545). Furthermore, haplotypes analysis of the two TLR4 polymorphisms by three independent programs revealed association of haplotypes with severe RSV infection (p≤ 0.0010). In contrast, the promotor polymorphism within CD14 was not associated with susceptibility to RSV disease. We conclude from our study, that TLR4 polymorphisms, and particularly the haplotypes, may influence the genetic predisposition to severe RSV infection.


2018 ◽  
Author(s):  
Darren Wethington ◽  
Olivia Harder ◽  
Karthik Uppulury ◽  
William C. L. Stewart ◽  
Phylip Chen ◽  
...  

AbstractRespiratory syncytial virus (RSV) is a common virus that can have varying effects ranging from mild cold-like symptoms to mortality depending on the age and immune status of the individual. We combined mathematical modeling using ordinary differential equations (ODEs) with measurement of RSV infection kinetics in primary well differentiated human airway epithelial (HAE) cultures in vitro and in immunocompetent and immunosuppressed cotton rats to glean mechanistic details that underlie RSV infection kinetics in the lung. Quantitative analysis of viral titer kinetics in our mathematical model showed that the elimination of infected cells by the adaptive immune response generates unique RSV titer kinetic features including a faster time scale of viral titer clearance than viral production, and a monotonic decrease in the peak RSV titer with decreasing inoculum dose. Parameter estimation in the ODE model using a non-linear mixed effects approach revealed a very low rate (average single cell lifetime > 10 days) of cell lysis by RSV before the adaptive immune response is initiated. Our model predicted negligible changes in the RSV titer kinetics on earlier days (< 5 d.p.i) but a slower decay in RSV titer at later days (>5 d.p.i) in immunosuppressed cotton rats compared to that in non-suppressed cotton rats in silico. These predictions were in excellent agreement with the experimental results. Our combined approach quantified the importance of the adaptive immune response in suppressing RSV infection in cotton rats, which could be useful in testing RSV vaccine candidates.ImportanceA major difficulty in developing vaccines against RSV infection is our rudimentary understanding of the mechanisms that underlie RSV infection. We addressed this challenge by developing a mechanistic computational model with predictive powers for describing RSV infection kinetics in cotton rats. The model was constructed synergistically with in vitro and in vivo measurements. The combined framework determined an important role for CD8+ T cells responses in reducing RSV titers in cotton rats. The framework can be used to design future experiments to elucidate mechanisms underlying RSV infection and test outcomes for potential vaccine candidates. In addition, estimation of the model parameters provides quantitative values for parameters of biological and clinical interest such as the replication rate of RSV, the death rate of infected cells, and the average number of new infections initiated by a single infected cell.


Sign in / Sign up

Export Citation Format

Share Document