scholarly journals A Machine Learning Approach to Horizon Line Detection Using Local Features

Author(s):  
Touqeer Ahmad ◽  
George Bebis ◽  
Emma E. Regentova ◽  
Ara Nefian
2015 ◽  
Vol 24 (04) ◽  
pp. 1540018 ◽  
Author(s):  
Touqeer Ahmad ◽  
George Bebis ◽  
Emma Regentova ◽  
Ara Nefian ◽  
Terry Fong

In this paper, we consider the problem of segmenting an image into sky and non-sky regions, typically referred to as horizon line detection or skyline extraction. Specifically, we present a new approach to horizon line detection by coupling machine learning with dynamic programming. Given an image, the Canny edge detector is applied first and keeping only those edges which survive over a wide range of thresholds. We refer to the surviving edges as Maximally Stable Extremal Edges (MSEEs). The number of edges is further reduced by classifying MSEEs into horizon and non-horizon edges using a Support Vector Machine (SVM) classifier. Dynamic programming is then applied on the horizon classified edges to extract the horizon line. Various local texture features and their combinations have been investigated in training the horizon edge classifier including SIFT, LBP, HOG, SIFT-LBP, SIFT-HOG, LBP-HOG and SIFT-LBP-HOG. We have also investigated various nodal costs in the context of dynamic programming including binary edge scores, normalized edge classification scores, gradient magnitude and their combinations. The proposed approach has been evaluated and compared with a competitive approach on two challenging data sets, illustrating superior performance.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  

2020 ◽  
Author(s):  
Clifford A. Brown ◽  
Jonny Dowdall ◽  
Brian Whiteaker ◽  
Lauren McIntyre

2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


Sign in / Sign up

Export Citation Format

Share Document