scholarly journals A Distributed Real-Time Event Correlation Architecture for SCADA Security

Author(s):  
Yi Deng ◽  
Sandeep Shukla

2008 ◽  
Vol 50 (5) ◽  
Author(s):  
Rainer Buchty ◽  
Wolfgang Karl

AbstractAlready today we face architectures featuring up to several hundreds of processors, being able to manage several thousand concurrent threads. Future architectures, however, will not only see an increase in parallelism but also feature an increase in heterogeneity and reconfigurability. Judging from current production and prototype architectures, we also see that such systems will be tiled, i. e., individual cores with local memory interconnected through some means of on-chip communication. Current discussions show that existing approaches to application mapping, parallelization, data locality optimization, and system management do not match these upcoming architectures well, thus rather hampering than harnessing the power of future systems. We will therefore outline the requirements of upcoming architectures and demonstrate how self-organization, including bio-inspired, techniques may help to manage system complexity. Key to these techniques is a sophisticated decentralized, hierarchical monitoring approach suitable for sustained real-time monitoring and event correlation for current and future high-performance architectures.



2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Peng Lu ◽  
Teng Hu ◽  
Hao Wang ◽  
Ruobin Zhang ◽  
Guo Wu

The attacks on the critical infrastructure network have increased sharply, and the strict management measures of the critical infrastructure network have caused its correlation analysis technology for security events to be relatively backward; this makes the critical infrastructure network’s security situation more severe. Currently, there is no common correlation analysis technology for the critical infrastructure network, and most technologies focus on expanding the dimension of data analysis, but with less attention to the optimization of analysis performance. The analysis performance does not meet the practical environment, and real-time analysis is even more impossible; as a result, the efficiency of security threat detection is greatly declined. To solve this issue, we propose the greedy tree algorithm, a correlation analysis approach based on the greedy algorithm, which optimizes event analysis steps and significantly improves the performance, so the real-time correlation analysis can be realized. We first verify the performance of the algorithm through formalization, and then the G-CAS (Greedy Correlation Analysis System) is implemented based on this algorithm and is applied in a real critical infrastructure network, which outperformed the current mainstream products.



Author(s):  
Brian T. Contos ◽  
William P. Crowell ◽  
Colby DeRodeff ◽  
Dan Dunkel ◽  
Eric Cole ◽  
...  


Author(s):  
J. Simoes ◽  
A. Blanquet ◽  
N. Santos


1979 ◽  
Vol 44 ◽  
pp. 41-47
Author(s):  
Donald A. Landman

This paper describes some recent results of our quiescent prominence spectrometry program at the Mees Solar Observatory on Haleakala. The observations were made with the 25 cm coronagraph/coudé spectrograph system using a silicon vidicon detector. This detector consists of 500 contiguous channels covering approximately 6 or 80 Å, depending on the grating used. The instrument is interfaced to the Observatory’s PDP 11/45 computer system, and has the important advantages of wide spectral response, linearity and signal-averaging with real-time display. Its principal drawback is the relatively small target size. For the present work, the aperture was about 3″ × 5″. Absolute intensity calibrations were made by measuring quiet regions near sun center.



Author(s):  
Alan S. Rudolph ◽  
Ronald R. Price

We have employed cryoelectron microscopy to visualize events that occur during the freeze-drying of artificial membranes by employing real time video capture techniques. Artificial membranes or liposomes which are spherical structures within internal aqueous space are stabilized by water which provides the driving force for spontaneous self-assembly of these structures. Previous assays of damage to these structures which are induced by freeze drying reveal that the two principal deleterious events that occur are 1) fusion of liposomes and 2) leakage of contents trapped within the liposome [1]. In the past the only way to access these events was to examine the liposomes following the dehydration event. This technique allows the event to be monitored in real time as the liposomes destabilize and as water is sublimed at cryo temperatures in the vacuum of the microscope. The method by which liposomes are compromised by freeze-drying are largely unknown. This technique has shown that cryo-protectants such as glycerol and carbohydrates are able to maintain liposomal structure throughout the drying process.



Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.



Author(s):  
R. Rajesh ◽  
R. Droopad ◽  
C. H. Kuo ◽  
R. W. Carpenter ◽  
G. N. Maracas

Knowledge of material pseudodielectric functions at MBE growth temperatures is essential for achieving in-situ, real time growth control. This allows us to accurately monitor and control thicknesses of the layers during growth. Undesired effusion cell temperature fluctuations during growth can thus be compensated for in real-time by spectroscopic ellipsometry. The accuracy in determining pseudodielectric functions is increased if one does not require applying a structure model to correct for the presence of an unknown surface layer such as a native oxide. Performing these measurements in an MBE reactor on as-grown material gives us this advantage. Thus, a simple three phase model (vacuum/thin film/substrate) can be used to obtain thin film data without uncertainties arising from a surface oxide layer of unknown composition and temperature dependence.In this study, we obtain the pseudodielectric functions of MBE-grown AlAs from growth temperature (650°C) to room temperature (30°C). The profile of the wavelength-dependent function from the ellipsometry data indicated a rough surface after growth of 0.5 μm of AlAs at a substrate temperature of 600°C, which is typical for MBE-growth of GaAs.



Author(s):  
K. Harada ◽  
T. Matsuda ◽  
J.E. Bonevich ◽  
M. Igarashi ◽  
S. Kondo ◽  
...  

Previous observations of magnetic flux-lines (vortex lattices) in superconductors, such as the field distribution of a flux-line, and flux-line dynamics activated by heat and current, have employed the high spatial resolution and magnetic sensitivity of electron holography. And recently, the 2-D static distribution of vortices was also observed by this technique. However, real-time observations of the vortex lattice, in spite of scientific and technological interest, have not been possible due to experimental difficulties. Here, we report the real-time observation of vortex lattices in a thin superconductor, by means of Lorentz microscopy using a 300 kV field emission electron microscope. This technique allows us to observe the dynamic motion of individual vortices and record the events on a VTR system.The experimental arrangement is shown in Fig. 1. A Nb thin film for transmission observation was prepared by chemical etching. The grain size of the film was increased by annealing, and single crystals were observed with a thickness of 50∼90 nm.



Sign in / Sign up

Export Citation Format

Share Document