Beam-Width Adaptation for Hierarchical Phrase-Based Translation

Author(s):  
Fei Su ◽  
Gang Chen ◽  
Xinyan Xiao ◽  
Kaile Su
Keyword(s):  
Author(s):  
Valery Ray ◽  
Josef V. Oboňa ◽  
Sharang Sharang ◽  
Lolita Rotkina ◽  
Eddie Chang ◽  
...  

Abstract Despite commercial availability of a number of gas-enhanced chemical etches for faster removal of the material, there is still lack of understanding about how to take into account ion implantation and the structural damage by the primary ion beam during focused ion beam gas-assisted etching (FIB GAE). This paper describes the attempt to apply simplified beam reconstruction technique to characterize FIB GAE within single beam width and to evaluate the parameters critical for editing features with the dimensions close to the effective ion beam diameter. The approach is based on reverse-simulation methodology of ion beam current profile reconstruction. Enhancement of silicon dioxide etching with xenon difluoride precursor in xenon FIB with inductively coupled plasma ion source appears to be high and relatively uniform over the cross-section of the xenon beam, making xenon FIB potentially suitable platform for selective removal of materials in circuit edit application.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hiroki Shiba ◽  
Yuji Sato ◽  
Junichi Furuya ◽  
Tokiko Osawa ◽  
Akio Isobe ◽  
...  

Abstract Background Screw breakage and loosening are the most common mechanical complications associated with implant treatment, and they may occur due to excess or inadequate screw tightening torque. When fastening and fixing the implant superstructure, screws are tightened using a torque wrench, which is essential for an accurate tightening force. However, the characteristics of the torque wrench have not been fully verified. Therefore, we aimed to clarify the factors affecting the torque with a focus on beam-type torque wrenches, which are the main types of wrenches. Methods The torque values generated by beam-type torque wrenches from eight manufacturers were measured using a torque gauge. To investigate the influence of the location of the beam relative to the scale, measurements were performed with a scale aligned with the trailing edge, center, and leading edge of the beam respectively. Additionally, measurements were taken at 90°, 60°, and 30° to examine the effect of the angle at which the examiner read the torque value. Under each condition, a single examiner applied the recommended torque to each manufacturer's screws five times in a clockwise direction. The average measured torque, standard deviation, bias, and coefficient of variation were calculated and compared accordingly. Results Wrenches from six manufacturers demonstrated excellent accuracy for measurements at the center of the beam (bias within ± 4%). For measurements at 90°, equipments from five manufacturers displayed excellent accuracy (bias within ± 7%), and seven showed excellent repeatability (coefficient of variation ≤ 2%). Conclusion The scale should be aligned with the center of the beam and read from 90° while using a torque wrench. The accuracy and repeatability torques generated by the wrenches differed according to the manufacturer, scale width, scale line width, beam width, and distance between the scale and beam center. Based on these results, we suggest that a torque wrench must be selected after determining the difference in the structure of the torque wrench.


Frequenz ◽  
2020 ◽  
Vol 74 (11-12) ◽  
pp. 383-392
Author(s):  
Rajveer S. Yaduvanshi ◽  
Richa Gupta ◽  
Saurabh Katiyar

AbstractSmartdielectric resonator antenna (DRA) having beam control mechanism is anew area to be explored by antenna researchers. Proposed new geometry DRA has low loss, design flexibility, high efficiency, compact size and desired radiated beam control. Developing beam control in new geometry DRAs is investigated for the first time in this letter. Unique technique for beam control and beam width control is proposed using pit top and mount top DRA. Gain is controlled from 5.0 to 9.98 dBi and beam is controlled from ±30° to ±70° in broadside radiation pattern. U shape pit DRA has maximum directive gain of 9.98 dBi and efficiency 98% at 5.8 GHz frequency. Measured and simulated results of radiation pattern and reflection coefficient are found to be in close proximity. Hardware of U shape pit top DRA, mount top DRA, left side arc top DRA, right side arc shape top DRA is developed and investigated. Mobile and cellular communication network need wide coverage, hence large beam width is required. Narrowing of beam width at higher order mode is also achieved.


2020 ◽  
Vol 75 (7) ◽  
pp. 671-675
Author(s):  
Niti Kant ◽  
Vishal Thakur

AbstractAn analysis of the self-focusing of highly intense chirped pulse laser under exponential plasma density ramp with higher order value of axial electron temperature has been done. Beam width parameter is derived by using paraxial ray approximation and then solved numerically. It is seen that self-focusing of chirped pulse laser is intensely affected by the higher order values of axial electron temperature. Further, influence of exponential plasma density ramp is studied and it is concluded that self-focusing of laser enhances and occurs earlier. On the other hand defocusing of beam reduces to the great extent. It is noticed that the laser spot size reduces significantly under joint influence of the density ramp and the axial electron temperature. Present analysis may be useful for the analysis of quantum dots, the laser induced fusion and etc.


1984 ◽  
Vol 108 ◽  
pp. 395-396
Author(s):  
K. Rohlfs ◽  
J. Kreitschmann ◽  
J. V. Feitzinger

The measurements were made in Feb. 1982 with the Parkes 64 m telescope using a corrugated waveguide horn with total half-power beam width of 15′, the first sidelobes being 19 dB down, resulting in an aperture efficiency ηA=0.53±0.007, a main beam efficiency of ηmb=0.80±0.005 and a ratio of source flux to antenna temperature of Γ=0.62±0.1 K/Jy (Murray, priv. comm.). A cooled two channel FET frontend used in the frequency switching mode with Δν = 2 MHz resulted in a system noise temperature at zenith of Tsyst = 40 K for one channel and Tsyst = 50 K for the other. Each frontend channel received a single polarization mode, and this radiation was then further analysed in a 2 × 512 channel autocorrelation spectrometer set at a channel separation of 3.906 KHz corresponding to a velocity resolution of V = 0.824 km s−1. Hanning smoothed this resulted in a σT = 0.05 K for the average of both polarization.


Author(s):  
Zeinab Kteish ◽  
Jad Abou Chaaya ◽  
Abbass Nasser ◽  
Koffi-Clement Yao ◽  
Ali Mansour
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document