scholarly journals Testing for Structural Breaks in Time Series Regressions with Heavy-tailed Disturbances

Author(s):  
Stefan Mittnik ◽  
Svetlozar T. Rachev ◽  
Gennady Samorodnitsky
Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 890
Author(s):  
Jakub Bartak ◽  
Łukasz Jabłoński ◽  
Agnieszka Jastrzębska

In this paper, we study economic growth and its volatility from an episodic perspective. We first demonstrate the ability of the genetic algorithm to detect shifts in the volatility and levels of a given time series. Having shown that it works well, we then use it to detect structural breaks that segment the GDP per capita time series into episodes characterized by different means and volatility of growth rates. We further investigate whether a volatile economy is likely to grow more slowly and analyze the determinants of high/low growth with high/low volatility patterns. The main results indicate a negative relationship between volatility and growth. Moreover, the results suggest that international trade simultaneously promotes growth and increases volatility, human capital promotes growth and stability, and financial development reduces volatility and negatively correlates with growth.


2021 ◽  
Vol 5 (1) ◽  
pp. 10
Author(s):  
Mark Levene

A bootstrap-based hypothesis test of the goodness-of-fit for the marginal distribution of a time series is presented. Two metrics, the empirical survival Jensen–Shannon divergence (ESJS) and the Kolmogorov–Smirnov two-sample test statistic (KS2), are compared on four data sets—three stablecoin time series and a Bitcoin time series. We demonstrate that, after applying first-order differencing, all the data sets fit heavy-tailed α-stable distributions with 1<α<2 at the 95% confidence level. Moreover, ESJS is more powerful than KS2 on these data sets, since the widths of the derived confidence intervals for KS2 are, proportionately, much larger than those of ESJS.


2015 ◽  
Vol 7 (2) ◽  
pp. 262-279 ◽  
Author(s):  
Zhichao Guo ◽  
Yuanhua Feng ◽  
Thomas Gries

Purpose – The purpose of this paper is to investigate changes of China’s agri-food exports to Germany caused by China’s accession to WTO and the global financial crisis in a quantitative way. The paper aims to detect structural breaks and compare differences before and after the change points. Design/methodology/approach – The structural breaks detection procedures in this paper can be applied to find out two different types of change points, i.e. in the middle and at the end of one time series. Then time series and regression models are used to compare differences of trade relationship before and after the detected change points. The methods can be employed in any economic series and work well in practice. Findings – The results indicate that structural breaks in 2002 and 2009 are caused by China’s accession to WTO and the financial crisis. Time series and regression models show that the development of China’s exports to Germany in agri-food products has different features in different sub-periods. Before 1999, there is no significant relationship between China’s exports to Germany and Germany’s imports from the world. Between 2002 and 2008 the former depends on the latter very strongly, and China’s exports to Germany developed quickly and stably. It decreased, however suddenly in 2009, caused by the great reduction of Germany’s imports from the world in that year. But China’s market share in Germany still had a small gain. Analysis of two categories in agri-food trade also leads to similar conclusions. Comparing the two events we see rather different patterns even if they both indicate structural breaks in the development of China’s agri-food exports to Germany. Originality/value – This paper partly originally proposes two statistical algorithms for detecting different kinds of structural breaks in the middle part and at the end of a short-time series, respectively.


2011 ◽  
Author(s):  
Sjoerd van den Hauwe ◽  
Richard Paap ◽  
Dick J. C. van Dijk

2021 ◽  
Vol 15 (1) ◽  
pp. 72-84
Author(s):  
Vicente Esteve ◽  
Maria A. Prats

Abstract In this article, we use tests of explosive behavior in real house prices with annual data for the case of Australia for the period 1870–2020. The main contribution of this paper is the use of very long time series. It is important to use longer span data because it offers more powerful econometric results. To detect episodes of potential explosive behavior in house prices over this long period, we use the recursive unit root tests for explosiveness proposed by Phillips et al. (2011), (2015a,b). According to the results, there is a clear speculative bubble behavior in real house prices between 1997 and 2020, speculative process that has not yet been adjusted.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jorge Martínez Compains ◽  
Ignacio Rodríguez Carreño ◽  
Ramazan Gençay ◽  
Tommaso Trani ◽  
Daniel Ramos Vilardell

Abstract Johansen’s Cointegration Test (JCT) performs remarkably well in finding stable bivariate cointegration relationships. Nonetheless, the JCT is not necessarily designed to detect such relationships in presence of non-linear patterns such as structural breaks or cycles that fall in the low frequency portion of the spectrum. Seasonal adjustment procedures might not detect such non-linear patterns, and thus, we expose the difficulty in identifying cointegrating relations under the traditional use of JCT. Within several Monte Carlo experiments, we show that wavelets can empower more the JCT framework than the traditional seasonal adjustment methodologies, allowing for identification of hidden cointegrating relationships. Moreover, we confirm these results using seasonally adjusted time series as US consumption and income, gross national product (GNP) and money supply M1 and GNP and M2.


Biometrika ◽  
2020 ◽  
Vol 107 (3) ◽  
pp. 647-660
Author(s):  
H Dehling ◽  
R Fried ◽  
M Wendler

Summary We present a robust and nonparametric test for the presence of a changepoint in a time series, based on the two-sample Hodges–Lehmann estimator. We develop new limit theory for a class of statistics based on two-sample U-quantile processes in the case of short-range dependent observations. Using this theory, we derive the asymptotic distribution of our test statistic under the null hypothesis of a constant level. The proposed test shows better overall performance under normal, heavy-tailed and skewed distributions than several other modifications of the popular cumulative sums test based on U-statistics, one-sample U-quantiles or M-estimation. The new theory does not involve moment conditions, so any transform of the observed process can be used to test the stability of higher-order characteristics such as variability, skewness and kurtosis.


Sign in / Sign up

Export Citation Format

Share Document