Control of quantum confinement in metal-clad InAs quantum wells

Author(s):  
S. Tsujino ◽  
S. J. Allen ◽  
M. Rüfenacht ◽  
M. Thomas ◽  
J. P. Zhang ◽  
...  
1994 ◽  
Vol 65 (12) ◽  
pp. 1540-1542 ◽  
Author(s):  
Takayuki Yamanaka ◽  
Koichi Wakita ◽  
Kiyoyuki Yokoyama

2007 ◽  
Vol 06 (05) ◽  
pp. 315-318 ◽  
Author(s):  
A. A. KOVALYOV ◽  
O. P. PCHELYAKOV ◽  
V. V. PREOBRAZHENSKII ◽  
M. M. PUTYATO ◽  
N. N. RUBTSOVA ◽  
...  

MBE growth of GaSb / InGaAsSb / GaSb heterostructures of high crystal quality is performed under continual RHEED control. Transmission spectra of the films forming multiple quantum wells in λ ≈ 2–3 μm region confirm possibility to control optical properties of the structures through quantum confinement and through the content of semiconductor elements. New design of saturable absorption semiconductor mirror (SESAM) for Cr 2+: ZnSe laser is proposed and manufactured on the base of the single quantum well GaSb / InGaAsSb / GaSb placed between dielectric antireflection and broadband high reflection coatings.


2002 ◽  
Vol 12 (04) ◽  
pp. 1159-1171
Author(s):  
RAPHAEL TSU

Since the introduction of the man-made superlattices and quantum well structures, the field has taken off and developed into Quantum Slab, QS; Quantum Wire, QW; Quantum Dot, QD; and Nanoelectronics. This rapidly expanding field owes its success to the development of epitaxially grown heterojunctions and heterostructures to confine carriers in injection lasers. Meanwhile, the advancement of lithography allows potentials to be applied in nanoscale dimension leading to the possibility of quantum confinement without heterostructures. Actually, quantum states in the inversion layer of field effect transistors, FETs, formed by the application of a large gate voltage appeared several years before the introduction of the superlattices and quantum wells. The quantum Hall effect was first discovered in the Si inversion layer. This chapter, Multipole-Electrode Heterojunction Hybrid Structure, MEHHS, discusses hybrid structures of heterojunctions and applied potentials via multipole-electrodes for a much wider variety of structures for future quantum devices. The technology required to fabricate these electrodes, to some degree, is routinely used in the double-gate devices. Few specific examples are detailed here, hopefully, to stimulate a rapid adoption of a hybrid system for the formation of quasi-discrete states for quantum devices.


2009 ◽  
Vol 23 (12n13) ◽  
pp. 2948-2954
Author(s):  
C. A. DUARTE ◽  
G. M. GUSEV ◽  
T. E. LAMAS ◽  
A. K. BAKAROV ◽  
J.-C. PORTAL

Here we present the results of magneto resistance measurements in tilted magnetic field and compare them with calculations. The comparison between calculated and measured spectra for the case of perpendicular fields enable us to estimate the dependence of the valley splitting as a function of the magnetic field and the total Landé g -factor (which is assumed to be independent of the magnetic field). Since both the exchange contribution to the Zeeman splitting as well as the valley splitting are properties associated with the 2D quantum confinement, they depend only on the perpendicular component of the magnetic field, while the bare Zeeman splitting depends on the total magnetic field. This information aided by the comparison between experimental and calculated gray scale maps permits to obtain separately the values of the exchange and the bare contribution to the g -factor.


1999 ◽  
Vol 59 (15) ◽  
pp. 9756-9759 ◽  
Author(s):  
I. J. Blewett ◽  
D. J. Bain ◽  
A. Tookey ◽  
G. Brown ◽  
I. Galbraith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document