Direct Numerical Simulations of an Adverse Pressure Gradient Turbulent Boundary Layer on High Performance Computers

Author(s):  
Michael Manhart
2011 ◽  
Vol 670 ◽  
pp. 581-605 ◽  
Author(s):  
GUILLERMO ARAYA ◽  
LUCIANO CASTILLO ◽  
CHARLES MENEVEAU ◽  
KENNETH JANSEN

A dynamic method for prescribing realistic inflow boundary conditions is presented for simulations of spatially developing turbulent boundary layers. The approach is based on the rescaling–recycling method proposed by Lund, Wu & Squires (J. Comput. Phys, vol. 140, 1998, pp. 233–258) and the multi-scale method developed by Araya, Jansen & Castillo (J. Turbul., vol. 10, no. 36, 2009, pp. 1–33). The rescaling process requires prior knowledge about how the velocity and length scales are related between the inlet and recycle stations. Here a dynamic approach is proposed in which such information is deduced dynamically by involving an additional plane, the so-called test plane located between the inlet and recycle stations. The approach distinguishes between the inner and outer regions of the boundary layer and enables the use of multiple velocity scales. This flexibility allows applications to boundary layer flows with pressure gradients and avoids the need to prescribe empirically the friction velocity and other flow parameters at the inlet of the domain. The dynamic method is tested in direct numerical simulations of zero, favourable and adverse pressure gradient flows. The dynamically obtained scaling exponents for the downstream evolution of boundary layer parameters are found to fluctuate in time, but on average they agree with the expected values for zero, favourable and adverse pressure gradient flows. Comparisons of the results with data from experiments, and from other direct numerical simulations that use much longer computational domains to capture laminar-to-turbulence transition, demonstrate the suitability of the proposed dynamic method.


1951 ◽  
Vol 18 (1) ◽  
pp. 95-100
Author(s):  
Donald Ross ◽  
J. M. Robertson

Abstract As an interim solution to the problem of the turbulent boundary layer in an adverse pressure gradient, a super-position method of analysis has been developed. In this method, the velocity profile is considered to be the result of two effects: the wall shear stress and the pressure recovery. These are superimposed, yielding an expression for the velocity profiles which approximate measured distributions. The theory also leads to a more reasonable expression for the wall shear-stress coefficient.


Author(s):  
Frank J. Aldrich

A physics-based approach is employed and a new prediction tool is developed to predict the wavevector-frequency spectrum of the turbulent boundary layer wall pressure fluctuations for subsonic airfoils under the influence of adverse pressure gradients. The prediction tool uses an explicit relationship developed by D. M. Chase, which is based on a fit to zero pressure gradient data. The tool takes into account the boundary layer edge velocity distribution and geometry of the airfoil, including the blade chord and thickness. Comparison to experimental adverse pressure gradient data shows a need for an update to the modeling constants of the Chase model. To optimize the correlation between the predicted turbulent boundary layer wall pressure spectrum and the experimental data, an optimization code (iSIGHT) is employed. This optimization module is used to minimize the absolute value of the difference (in dB) between the predicted values and those measured across the analysis frequency range. An optimized set of modeling constants is derived that provides reasonable agreement with the measurements.


Sign in / Sign up

Export Citation Format

Share Document