Inverter Fed High-Speed Solid-Rotor Induction Motors for Industrial Applications

Author(s):  
Huppunen Jussi ◽  
Pyrhonen Juha ◽  
Alamaki Jarmo
2004 ◽  
Vol 86 (2) ◽  
pp. 105-116 ◽  
Author(s):  
G. Joksimovic ◽  
A. Binder
Keyword(s):  

2021 ◽  
Vol 1 (1) ◽  
pp. 40-49
Author(s):  
S. Rachev ◽  
K. Dimitrova ◽  
D. Koeva ◽  
L. Dimitrov

During the operation of electric induction motors used to drive passenger elevators, electro-mechanical transient processes occur, which can cause unacceptable dynamic loads and vibrations. In this regard, research is needed both at the design stage and for operating elevator systems to determine the arising impact currents and torques, in order to propose solutions for their limitation within pre-set limits. Paper deals with starting processes in a two-speed induction motor drive of a passenger elevator. The equations for the voltages of the induction motor are presented in relative units in a coordinate system rotating at a synchronous speed. The values have been obtained for the torques, the rotational frequencies and the currents when starting at a high speed and passing from high to low speed.


2002 ◽  
Vol 124 (4) ◽  
pp. 1025-1031 ◽  
Author(s):  
M. Spirig ◽  
J. Schmied ◽  
P. Jenckel ◽  
U. Kanne

The use of magnetic bearing in industrial applications has increased due to their unique properties. Nowadays efficiency and predictability in handling rotors on magnetic bearings is asked with the same standard as conventional rotors on oil or roller bearings. First of all one must be aware of the special technical properties of magnetic bearing designs. The dynamic behavior of the rotor combined with requirements of the application define the desired bearing characteristic. With modern tools covering the mechanical aspects as well as the electronic controllers and their digital implementation on a DSP, these properties can be designed. However, despite the use of such efficient tools engineering practice is needed. Therefore this paper summarizes the major steps in the control design process of industrial applications. Three rotors supported on magnetic bearing with their specific dynamic behavior are presented: a very small high speed spindle (120,000 rpm); a small industrial turbo molecular pump rotor (36,000 rpm); and a large multistage centrifugal compressor (600 to 6300 rmp). The results of the analyses and their experimental verification are given.


Author(s):  
Ahmed Thamer Radhi ◽  
Wael Hussein Zayer

The paper deals with faults diagnosis method proposed to detect the inter-turn and turn to earth short circuit in stator winding of three-phase high-speed solid rotor induction motors. This method based on negative sequence current of motor and fuzzy neural network algorithm. On the basis of analysis of 2-D electromagnet field in the solid rotor the rotor impedance has been derived to develop the solid rotor induction motor equivalent circuit. The motor equivalent circuit is simulated by MATLAB software to study and record the data for training and testing the proposed diagnosis method. The numerical results of proposed approach are evaluated using simulation of a three-phase high-speed solid-rotor induction motor of two-pole, 140 Hz. The results of simulation shows that the proposed diagnosis method is fast and efficient for detecting inter-turn and turn to earth faults in stator winding of high-speed solid-rotor induction motors with different faults conditions


2021 ◽  
Vol 5 (1) ◽  
pp. 51-62
Author(s):  
Adnan Ahmed ◽  
Abdul Majeed Shaikh ◽  
Muhammad Fawad Shaikh ◽  
Shoaib Ahmed Shaikh ◽  
Jahangir Badar Soomro

Induction motors are widely used from home to industrial applications. Speed of induction motor plays important role, so to control the speed of induction motor various techniques are adopted and one of these techniques is V/F control, which is adopted in this paper. This technique helps to control the speed in open control system in RPM. Moreover, Control is designed in LabVIEW, it is quite helpful to develop the circuit graphically and code is automatically written in the background to run on Field Programmable Gate Array (FPGA). The aim of this research is to study the impacts on diverse parameters during speed control of three phase induction machine with manipulation of GPIC. Solar technology is used as input source to drive the General-Purpose Inverter Controller (GPIC). Apart of this, impacts of modulation index and carrier frequency influencing the active, reactive and apparent power, temperature and power quality and current overshoot is analysed. MATLAB/Simulink and LabVIEW tools are used for simulation and results along with GPIC, Induction motor and solar panel as hardware.


Author(s):  
Azzeddine Ferrah ◽  
Mounir Bouzguenda ◽  
Jehad M. Al-Khalaf Bani Younis

Large and small single-phase and three-phase induction motors are commonly used in industrial applications. The present work represents an attempt towards the design of a high accuracy system for the measurement of fractional horsepower (FHP) induction motor losses and efficiency. The calorimeter designed and built is capable of measuring heat losses of up to 1 kW with an overall accuracy better than 3%. During all tests, ambient temperature, humidity, motor speed and motor frame temperature were recorded using precise digital instruments. The inlet, outlet temperatures and resulting losses were recorded automatically using a high accuracy 12-bit data acquisition system. The preliminary results obtained demonstrate the suitability of the designed calorimeter for the accurate measurement of losses in FHP induction motors.


Sign in / Sign up

Export Citation Format

Share Document