Social Costs of Climate Change Strong Sustainability and Social Costs

1997 ◽  
pp. 61-83
Author(s):  
Olav Hohmeyer
2017 ◽  
Vol 34 (2) ◽  
pp. 229-248 ◽  
Author(s):  
Matthew E. Kahn

Climate change could significantly reduce the quality of life for poor people in Asia. Extreme heat and drought, and the increased incidence of natural disasters will pose new challenges for the urban poor and rural farmers. If farming profits decline, urbanization rates will accelerate and the social costs of rapid urbanization could increase due to rising infectious disease rates, pollution, and congestion. This paper studies strategies for reducing the increased social costs imposed on cities by climate change.


2022 ◽  
Vol 14 (2) ◽  
pp. 903
Author(s):  
Raymundo Marcos-Martinez ◽  
José J. Sánchez ◽  
Lorie Srivastava ◽  
Natthanij Soonsawad ◽  
Dominique Bachelet

The protection and expansion of forest carbon sinks are critical to achieving climate-change mitigation targets. Yet, the increasing frequency and severity of forest disturbances challenge the sustainable provision of forest services. We investigated patterns of forest disturbances’ impacts on carbon sinks by combining spatial datasets of forest carbon sequestration from biomass growth and emissions from fire and bark beetle damage in the western United States (U.S.) and valued the social costs of forest carbon losses. We also examined potential future trends of forest carbon sinks under two climate-change projections using a global vegetation model. We found that forest carbon losses from bark-beetle damage were larger than emissions from fires between 2003 and 2012. The cumulative social costs of forest carbon losses ranged from USD 7 billion to USD 72 billion, depending on the severity of global warming and the discount rate. Forest carbon stocks could increase around 5% under Representative Concentration Pathway (RCP) 4.5 or 7% under RCP 8.5 by 2091 relative to 2011 levels, mostly in forests with high net primary productivity. These results indicate that spatially explicit management of forest disturbances may increase forest carbon sinks, thereby improving opportunities to achieve critical climate-change mitigation goals.


2020 ◽  
Vol 12 (20) ◽  
pp. 8560
Author(s):  
Rolando Fuentes ◽  
Marzio Galeotti ◽  
Alessandro Lanza ◽  
Baltasar Manzano

In this paper, we examine the similarities and the differences between two global problems, the coronavirus pandemic and climate change, and the extent to which the experience with the COVID-19 pandemic can be of use for tackling climate change. We show that both problems share the same microeconomic foundations, involving an overprovision of a global public bad. In addition, they entail externalities whose correction comes at very high economic and social costs. We leverage on a well-established problem such as climate change that has been studied for several years now, to highlight the common traits with the COVID-19 pandemic, but also important differences. The COVID-19 crisis is itself a reality check for climate policy, international governance and prevention in general. Indeed, the COVID-19 pandemic is a mock laboratory of climate change, where the time scale of unfolding events is reduced from decades to days. While the former is often measured in days, weeks, months, years, the latter is measured in years, decades, and centuries.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2001 ◽  
Vol 70 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Robert Moss ◽  
James Oswald ◽  
David Baines

Sign in / Sign up

Export Citation Format

Share Document