Double Cropping of Rice in Triple Cropping System and Soil Fertility

Author(s):  
Yang Wen-yuan ◽  
Liang Dun-fu ◽  
Xie Chun-qing ◽  
Wan Zong-yi
Author(s):  
V. А. Shchedrin

In OOO “Dubovitskoe” which was organized in 2006 as investment project of the AO “Shchelkovo Agrokhim” for 2010 – 2012 three advanced crop rotations have been developed. Before their introduction the grain crops fraction in the cropping system was 62%, then it fell to 49%. At the same time the portion of raw crops increased from 15 to 20%, legumes from 6 to 8%, others (buckwheat, grain maize, etc.) - up to 23%. As of 2017, the crops of leguminous crops have increased noteworthily. There are two predominant soil types here heavy clay loam podzolized chernozem (6615 ha) and grey forest soil (856 ha). Weighted average indicators (as of 2017): humus content in the soils of arable land is 5, 34%; acidity pH is 4.92; labile phosphorus - 111.8 mg / kg soil; exchange potassium - 144 mg / kg soil. The coefficient of the soil fertility in the enterprise (weighted average) is 0.66. This means that maintaining and increasing the soil fertility for arable land of the enterprise is critical task. As a result of the research, it has been established that the technologies introduced in the crop vegetation management (CVS) in the crop rotation conditions ensure high productivity of cultivated crops and stability of humus content in soils as an energy basis and a guarantor of increasing fertility. The indicators of the labile phosphorus Р205 and exchange potassium К20 in the soils depending on the crop rotation vary from a certain decrease to expressed steady growth. Therefore it is necessary to specify seeding rates based on actual data. Sustainable soil acidification in the crop rotations under crop cultivation in OOO “Dubovitskoe” it is the result of the acid feterlizers high rates application, during studying period did not carried out required agromelioration with calcium contenting elements.


2018 ◽  
Vol 44 (1) ◽  
pp. 137
Author(s):  
Bai-Zhao REN ◽  
Fei GAO ◽  
Yu-Jun WEI ◽  
Shu-Ting DONG ◽  
Bin ZHAO ◽  
...  

2001 ◽  
Vol 49 (4) ◽  
pp. 369-378 ◽  
Author(s):  
S. N. SHARMA ◽  
R. PRASAD

Field experiments were conducted for two crop years at the Indian Agricultural Research Institute, New Delhi to study the effect of enriching wheat residue with legume residue on the productivity and nitrogen uptake of a rice-wheat cropping system and soil fertility. The incorporation of wheat residue had an adverse effect on the productivity of the rice-wheat cropping system. When it was incorporated along with Sesbania green manure, not only did its adverse effect disappear but the response to fertilizer N was also increased. There was no response to fertilizer N when Sesbania green manure was incorporated. When wheat residue was incorporated along with Sesbania green manuring, rice responded significantly to fertilizer N up to 120 kg N ha-1 in the first year and to 60 kgN ha-1 in the second year and at these levels of N, Sesbania + wheat residue gave 0.8 to 1.2 t ha-1 more grain, 0.6-1.0 t ha-1 more straw and 8-15 kg ha-1 more N uptake of rice resulting in 0.04-0.17% more organic C, 3-8 kg ha-1 more available P and 17-25 kg ha-1 more available K content in the soil than wheat residue alone at the same rates of N application. The respective increaseas caused by Sesbania green manure + wheat residue over Sesbania green manure alone were 0.3-0.5 t ha-1 in the grain and straw yield, 1-9 kg ha-1 in the N uptake of rice, 0.02-0.10% in organic C, 1-8 kg ha-1 in available P and 35- 70 kg ha-1 in available K content in the soil. These treatments also gave higher residual effects in succeeding wheat than wheat residue alone. The incorporation of residues of both wheat and Sesbania is thus recommended to eliminate the adverse effect of wheat residue and to increase the beneficial effects of Sesbania green manuring.


2020 ◽  
Vol 56 (3) ◽  
pp. 422-439
Author(s):  
Guoping Wang ◽  
Yabing Li ◽  
Yingchun Han ◽  
Zhanbiao Wang ◽  
Beifang Yang ◽  
...  

AbstractThe cotton-wheat double-cropping system is widely used in the Yellow River Valley of China, but whether and how different planting patterns within cotton-wheat double-cropping systems impact heat and light use efficiency have not been well documented. A field experiment investigated the effects of the cropping system on crop productivity and the capture and use efficiency of heat and light in two fields differing in soil fertility. Three planting patterns, namely cotton intercropped with wheat (CIW), cotton directly seeded after wheat (CDW), and cotton transplanted after wheat (CTW), as well as one cotton monoculture (CM) system were used. Cotton-wheat double cropping significantly increased crop productivity and land equivalent ratios relative to the CM system in both fields. As a result of increased growing degree days (GDD), intercepted photosynthetically active radiation (IPAR), and photothermal product (PTP), the capture of light and heat in the double-cropping systems was compared with that in the CM system in both fields. With improved resource capture, the double-cropping systems exhibited a higher light and heat use efficiency according to thermal product efficiency, solar energy use efficiency (Eu), radiation use efficiency (RUE), and PTP use efficiency (PTPU). The cotton lint yield and biomass were not significantly correlated with RUE across cropping patterns, indicating that RUE does not limit cotton production. Among the double-cropping treatments, CDW had the lowest GDD, IPAR, and PTP values but the highest heat and light resource use efficiency and highest overall resource use efficiency. This good performance was even more obvious in the high-fertility field. Therefore, we encourage the expanded use of CDW in the Yellow River Valley, especially in fields with high fertility, given the high productivity and resource use efficiency of this system. Moreover, the use of agronomic practices involving a reasonably close planting density, optimized irrigation and nutrient supply, and the application of new short-season varieties of cotton or wheat can potentially enhance CDW crop yields and productivity.


2009 ◽  
Vol 86 (3) ◽  
pp. 301-315 ◽  
Author(s):  
Xiao Qin Dai ◽  
Hong Yan Zhang ◽  
J. H. J. Spiertz ◽  
Jun Yu ◽  
Guang Hui Xie ◽  
...  

2020 ◽  
Vol 2 ◽  
pp. ec02002
Author(s):  
Ivan C. F. Martins ◽  
Francisco J. Cividanes

The Ground beetles occurrence in agricultural areas can contribute to pest control as well as indicate environmental quality. This study aimed to evaluate the composition of the Carabidae community in an agricultural area of annual crops. Ninety-six pitfall traps were installed in a grid 10 meters apart. The experimental area had one hectare in a double-cropping system of soybean (summer) and corn (autumn-winter) followed by a fallow period. Ground beetle composition analysis was performed using ANAFAU software. We collected 42 species and 1537 specimens of Carabidae distributed in 14 tribes. Harpalini tribe was the most common compared to the others. Were considered predominant, in the fauna analysis, the species Calosoma alternans granulatum Perty, 1830, Selenophorus discopunctatus Dejean, 1829, Selenophorus alternans Dejean, 1829, Selenophorus sp.1, Tetracha brasiliensis (Kirby, 1819), Abaris basistriata Chaudoir, 1873 and Galerita collaris Dejean, 1826. Thus, a diverse and abundant Carabidae community was identified in that cropping system.


Sign in / Sign up

Export Citation Format

Share Document