Capsular Polysaccharides as Vaccine Candidates

Author(s):  
H. J. Jennings
2017 ◽  
Vol 24 (8) ◽  
Author(s):  
Arti Sharma ◽  
Sarita Rani ◽  
Syed Imteyaz Alam ◽  
Sarkaraisamy Ponmariappan
Keyword(s):  

2015 ◽  
Vol 13 (6) ◽  
pp. 462-478 ◽  
Author(s):  
Thorsten Demberg ◽  
Marjorie Robert-Guroff

2020 ◽  
Vol 17 ◽  
Author(s):  
Mehreen Ismail ◽  
Zureesha Sajid ◽  
Amjad Ali ◽  
Xiaogang Wu ◽  
Syed Aun Muhammad ◽  
...  

Background: Human Papillomavirus (HPV) is responsible for substantial morbidity and mortality worldwide. We predicted immunogenic promiscuous monovalent and polyvalent T-cell epitopes from the polyprotein of the Human Papillomavirus (HPV) using a range of bioinformatics tools and servers. Methods: We used immunoinformatics and reverse vaccinology-based approaches to design prophylactic peptides by antigenicity analysis, Tcell epitopes prediction, proteasomal and conservancy evaluation, host-pathogen protein interactions, and in silico binding affinity analysis. Results: We found two early proteins (E2 and E6) and two late proteins (L1 and L2) of HPV as potential vaccine candidates. Of these proteins (E2, E6, L1 & L2), 2-epitopes of each candidate protein for multiple alleles of MHC class I and II bearing significant binding affinity (>-6.0 kcal/mole). These potential epitopes for CD4+ and CD8+ T-cells were also linked to design polyvalent construct using GPGPG linkers. Cholera toxin B and mycobacterial heparin-binding hemagglutinin adjuvant with a molecular weight of 12.5 and 18.5 kDa were used for epitopes of CD4+ and CD8+ T-cells respectively. The molecular docking indicated the optimum binding affinity of HPV peptides with MHC molecules. This interaction showed that our predicted vaccine candidates are suitable to trigger the host immune system to prevent HPV infections. Conclusion: The predicted conserved T-cell epitopes would contribute to the imminent design of HPV vaccine candidates, which will be able to induce a broad range of immune-responses in a heterogeneous HLA population.


2020 ◽  
Vol 17 ◽  
Author(s):  
Anam Naz ◽  
Tahreem Zaheer ◽  
Hamza Arshad Dar ◽  
Faryal Mehwish Awan ◽  
Ayesha Obaid ◽  
...  

Background: Helicobacter pylori infection and its treatment still remains a challenge to human health worldwide. A variety of antibiotics and combination therapies are currently used to treat H. pylori induced ulcers and carcinoma; however, no effective treatment is available to eliminate the pathogen from the body. Additionally, antibiotic resistance is also one of the main reasons for prolonged and persistent infection. Aim of the study: Until new drugs are available for this infection, vaccinology seems the only alternative opportunity to exploit against H. pylori induced diseases. Methods: Multiple epitopes prioritized in our previous study have been tested for their possible antigenic combinations, and results in 169-mer and 183-mer peptide vaccines containing the amino acid sequences of 3 and 4 epitopes respectively, along with adjuvant (Cholera Toxin Subunit B adjuvant at 5’ end) and linkers (GPGPG and EAAAK). Results: Poly-epitope proteins proposed as potential vaccine candidates against H. pylori include SabAHP0289-Omp16-VacA (SHOV), VacA-Omp16-HP0289-FecA (VOHF), VacA-Omp16-HP0289-SabA (VOHS), VacA-Omp16-HP0289-BabA (VOHB), VacA-Omp16-HP0289-SabA-FecA (VOHSF), VacAOmp16-HP0289-SabA-BabA (VOHSB) and VacA-Omp16-HP0289-BabA-SabA (VOHBS). Structures of these poly-epitope peptide vaccines have been modelled and checked for their affinity with HLA alleles and receptors. These proposed poly-epitope vaccine candidates bind efficiently with A2, A3, B7 and DR1 superfamilies of HLA alleles. They can also form stable and significant interactions with Toll-like receptor 2 and Toll-like receptor 4. Conclusion: Results suggest that these multi-epitopic vaccines can elicit a significant immune response against H. pylori and can be tested further for efficient vaccine development.


Sign in / Sign up

Export Citation Format

Share Document