Prediction of Prophylactic Peptide Vaccine Candidates for Human Papillomavirus (HPV): An Immunoinformatics and Reverse Vaccinology Approach

2020 ◽  
Vol 17 ◽  
Author(s):  
Mehreen Ismail ◽  
Zureesha Sajid ◽  
Amjad Ali ◽  
Xiaogang Wu ◽  
Syed Aun Muhammad ◽  
...  

Background: Human Papillomavirus (HPV) is responsible for substantial morbidity and mortality worldwide. We predicted immunogenic promiscuous monovalent and polyvalent T-cell epitopes from the polyprotein of the Human Papillomavirus (HPV) using a range of bioinformatics tools and servers. Methods: We used immunoinformatics and reverse vaccinology-based approaches to design prophylactic peptides by antigenicity analysis, Tcell epitopes prediction, proteasomal and conservancy evaluation, host-pathogen protein interactions, and in silico binding affinity analysis. Results: We found two early proteins (E2 and E6) and two late proteins (L1 and L2) of HPV as potential vaccine candidates. Of these proteins (E2, E6, L1 & L2), 2-epitopes of each candidate protein for multiple alleles of MHC class I and II bearing significant binding affinity (>-6.0 kcal/mole). These potential epitopes for CD4+ and CD8+ T-cells were also linked to design polyvalent construct using GPGPG linkers. Cholera toxin B and mycobacterial heparin-binding hemagglutinin adjuvant with a molecular weight of 12.5 and 18.5 kDa were used for epitopes of CD4+ and CD8+ T-cells respectively. The molecular docking indicated the optimum binding affinity of HPV peptides with MHC molecules. This interaction showed that our predicted vaccine candidates are suitable to trigger the host immune system to prevent HPV infections. Conclusion: The predicted conserved T-cell epitopes would contribute to the imminent design of HPV vaccine candidates, which will be able to induce a broad range of immune-responses in a heterogeneous HLA population.

2006 ◽  
Vol 81 (2) ◽  
pp. 934-944 ◽  
Author(s):  
Markus Cornberg ◽  
Brian S. Sheridan ◽  
Frances M. Saccoccio ◽  
Michael A. Brehm ◽  
Liisa K. Selin

ABSTRACT Live vaccinia virus (VV) vaccination has been highly successful in eradicating smallpox. However, the mechanisms of immunity involved in mediating this protective effect are still poorly understood, and the roles of CD8 T-cell responses in primary and secondary VV infections are not clearly identified. By applying the concept of molecular mimicry to identify potential CD8 T-cell epitopes that stimulate cross-reactive T cells specific to lymphocytic choriomeningitis virus (LCMV) and VV, we identified after screening only 115 peptides two VV-specific immunogenic epitopes that mediated protective immunity against VV. An immunodominant epitope, VV-e7r130, did not generate cross-reactive T-cell responses to LCMV, and a subdominant epitope, VV-a11r198, did generate cross-reactive responses to LCMV. Infection with VV induced strong epitope-specific responses which were stable into long-term memory and peaked at the time virus was cleared, consistent with CD8 T cells assisting in the control of VV. Two different approaches, direct adoptive transfer of VV-e7r-specific CD8 T cells and prior immunization with a VV-e7r-expressing ubiquitinated minigene, demonstrated that memory CD8 T cells alone could play a significant role in protective immunity against VV. These studies suggest that exploiting cross-reactive responses between viruses may be a useful tool to complement existing technology in predicting immunogenic epitopes to large viruses, such as VV, leading to a better understanding of the role CD8 T cells play during these viral infections.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5255-5255
Author(s):  
Heather J. Symons ◽  
M. Yair Levy ◽  
Jie Wang ◽  
Xiaotao Zhou ◽  
Ephraim J. Fuchs

Abstract The “allogeneic effect” refers to the induction of host B cell antibody synthesis or host T cell cytotoxicity, including tumoricidal activity, by an infusion of allogeneic lymphocytes. We have previously shown that treatment of mice with cyclophosphamide (Cy) followed by infusion of CD8+ T cell-depleted allogeneic spleen cells (Cy + CD8− DLI) induces anti-tumor activity in a model of minimal residual leukemia, even though the donor cells are eventually rejected by the host immune system. The purpose of the current investigation was to test the activity of Cy + CD8− DLI in the treatment of well-established cancer, and to characterize the mechanisms of the anti-tumor effect. BALB/c mice were inoculated intravenously (IV) with the syngeneic A20 lymphoma/leukemia or the RENCA renal cell carcinoma on day 0 and were then treated with nothing, Cy alone on day 14, or Cy + CD8− DLI from MHC-mismatched C57BL/6 donors on day 15. In both tumor models, the combination of Cy + CD8− DLI significantly prolonged survival compared to mice treated with nothing or with Cy alone. While depletion of CD4+ T cells from the DLI significantly diminished the beneficial effect of CD8− DLI, purified CD4+ T cells alone were inactive, demonstrating that donor CD4+ T cells and another population of cells were required for optimal anti-tumor activity. Several observations pointed to an active role for the host immune system in the anti-tumor activity of Cy + CD8− DLI. First, host T cells participated in the anti-tumor effect of treatment with Cy alone, since the drug’s activity was diminished in tumor-bearing scid mice or in normal BALB/c mice depleted of T cells. Second, while Cy + CD8− DLI caused no GVHD in tumor-bearing but immunocompetent BALB/c recipients, it caused fatal acute GVHD in either tumor-bearing scid or T-cell depleted BALB/c mice. Finally, the anti-tumor effect of Cy + CD8- DLI was also significantly inhibited in BALB/c mice that were depleted of CD8+ T cells. These results demonstrate that transiently engrafting T cells administered after Cy can induce significant anti-tumor effects against both solid and liquid tumors. We propose that upon recognition of alloantigen on host antigen-presenting cells (APCs), allogeneic donor CD4+ T cells deliver activating ligands to the APCs, thereby generating effective “help” to break tolerance in tumor-specific host CD8+ T cells. This mechanism may correspond to the “allogeneic effect” in the anti-tumor response described over three decades ago.


2016 ◽  
Vol 34 (4) ◽  
pp. 396-409 ◽  
Author(s):  
Katja Nitschke ◽  
Hendrik Luxenburger ◽  
Muthamia M. Kiraithe ◽  
Robert Thimme ◽  
Christoph Neumann-Haefelin

Approximately 500 million people are chronically infected with the hepatitis B virus (HBV) or hepatitis C virus (HCV) worldwide and are thus at high risk of progressive liver disease, leading to liver fibrosis, cirrhosis and ultimately hepatocellular cancer. Virus-specific CD8+ T-cells play a major role in viral clearance in >90% of adult patients who clear HBV and in approximately 30% of patients who clear HCV in acute infection. However, several mechanisms contribute to the failure of the adaptive CD8+ T-cell response in those patients who progress to chronic infection. These include viral mutations leading to escape from the CD8+ T-cell response as well as exhaustion and dysfunction of virus-specific CD8+ T-cells. Antiviral efficacy of the virus-specific CD8+ T-cell response also strongly depends on its restriction by specific human leukocyte antigens (HLA) class I alleles. Our review will summarize the role of HLA-A, B and C-restricted CD8+ T-cells in HBV and HCV infection. Due to the current lack of a comprehensive database of HBV- and HCV-specific CD8+ T-cell epitopes, we also provide a summary of the repertoire of currently well-described HBV- and HCV-specific CD8+ T-cell epitopes. A better understanding of the factors that contribute to the success or failure of virus-specific CD8+ T-cells may help to develop new therapeutic options for HBV eradication in patients with chronic HBV infection (therapeutic vaccination and/or immunomodulation) as well as a prophylactic vaccine against HCV infection.


2008 ◽  
Vol 2 (9) ◽  
pp. e288 ◽  
Author(s):  
María G. Alvarez ◽  
Miriam Postan ◽  
D. Brent Weatherly ◽  
María C. Albareda ◽  
John Sidney ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Alexander Hellesen ◽  
Sigrid Aslaksen ◽  
Lars Breivik ◽  
Ellen Christine Røyrvik ◽  
Øyvind Bruserud ◽  
...  

ObjectivesCD8+ T cells targeting 21-hydroxylase (21OH) are presumed to play a central role in the destruction of adrenocortical cells in autoimmune Addison’s disease (AAD). Earlier reports have suggested two immunodominant CD8+ T cell epitopes within 21OH: LLNATIAEV (21OH342-350), restricted by HLA-A2, and EPLARLEL (21OH431-438), restricted by HLA-B8. We aimed to characterize polyclonal CD8+ T cell responses to the proposed epitopes in a larger patient cohort with AAD.MethodsRecombinant fluorescent HLA-peptide multimer reagents were used to quantify antigen-specific CD8+ T cells by flow cytometry. Interferon-gamma (IFNγ) Elispot and biochemical assays were used to functionally investigate the 21OH-specific T cells, and to map the exactly defined epitopes of 21OH.ResultsWe found a significantly higher frequency of HLA-A2 restricted LLNATIAEV-specific cells in patients with AAD than in controls. These cells could also be expanded in vitro in an antigen specific manner and displayed a robust antigen-specific IFNγ production. In contrast, only negligible frequencies of EPLARLEL-specific T cells were detected in both patients and controls with limited IFNγ response. However, significant IFNγ production was observed in response to a longer peptide encompassing EPLARLEL, 21OH430-447, suggesting alternative dominant epitopes. Accordingly, we discovered that the slightly offset ARLELFVVL (21OH434-442) peptide is a novel dominant epitope restricted by HLA-C7 and not by HLA-B8 as initially postulated.ConclusionWe have identified two dominant 21OH epitopes targeted by CD8+ T cells in AAD, restricted by HLA-A2 and HLA-C7, respectively. To our knowledge, this is the first HLA-C7 restricted epitope described for an autoimmune disease.


EBioMedicine ◽  
2021 ◽  
Vol 72 ◽  
pp. 103610
Author(s):  
Isaac Quiros-Fernandez ◽  
Mansour Poorebrahim ◽  
Elham Fakhr ◽  
Angel Cid-Arregui
Keyword(s):  
T Cells ◽  
T Cell ◽  

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15211-e15211
Author(s):  
Lauren Virginia Wood ◽  
Siva K Gandhapudi ◽  
Karuna Sundarapandiyan ◽  
Frank K Bedu-Addo ◽  
Gregory Conn ◽  
...  

e15211 Background: Immunotherapy approaches are limited in their ability to induce antigen-specific CD8+ T cells in vivo able to recognize and kill tumor cells. We developed a novel immunotherapy approach using enantiomerically pure, R-DOTAP cationic lipid nanoparticles and tumor-derived T cell antigens, and previously demonstrated that R-DOTAP formulations efficiently prime cytotoxic T cells through enhanced cross presentation and induction of type I interferons.[1] A phase I clinical trial of a R-DOTAP HPV16 peptide formulation confirmed induction of strong in vivo HPV-specific CD8+ cytolytic T-cells without associated systemic toxicities. In this study, we assessed R-DOTAP nanoparticle formulations containing whole protein (ovalbumin) or long multi-epitope peptides from the tumor antigen TARP (T-cell alternate reading frame protein): a 58-residue protein overexpressed in prostate and breast cancers, documented to be immunogenic in humans. Methods: R-DOTAP formulations were prepared containing ovalbumin (OVA) or TARP peptides. C57BL/6K mice were immunized with 10 μg/mouse of OVA plus R-DOTAP, CFA or sucrose on Days 0, 15 and 30. OVA-specific cellular and humoral responses following vaccination were assessed by measuring splenic CD4 and CD8 T cell IFN-γ production and circulating OVA-specific antibodies in serum. HLA-A2 transgenic mice (AAD mice) were vaccinated with long, multi-epitope TARP peptides delivered as an R-DOTAP admixture or with CFA or sucrose on Days 0 and 7. Antigen-specific T cell responses were measured by IFN-γ ELISpot assay. Results: OVA R-DOTAP formulations induced strong antigen-specific effector CD4 and CD8 immune and memory responses detected 7 and 30 days, respectively, following vaccination as well as OVA-specific antibody responses. In TARP peptide vaccinated mice, R-DOTAP formulations were able to present multiple CD8 T cell epitopes and stimulate responses that were superior to CFA. Conclusions: Our results suggest that R-DOTAP is a versatile immune activating therapy that can be formulated with long, multi-epitope tumor-derived peptides or whole proteins. R-DOTAP formulations induce quantitatively robust antigen-specific CD4 and CD8 T cells in vivo compared to well-established immune stimulants. Reference: 1.Gandhapudi SK, Ward M, Bush JP et al. Antigen Priming with Enantiospecific Cationic Lipid Nanoparticles Induces Potent Antitumor CTL Responses through Novel Induction of a Type I IFN Response. J Immunol 2019;202:3524-3536


2010 ◽  
Vol 40 (3) ◽  
pp. 899-910 ◽  
Author(s):  
Victoria A. Pudney ◽  
Rachael L. Metheringham ◽  
Barbara Gunn ◽  
Ian Spendlove ◽  
Judith M. Ramage ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document