Guanylate Cyclase in Signal Transduction of Dictyostelium Discoideum

1991 ◽  
pp. 497-509 ◽  
Author(s):  
Conchita C. G. M. Schulkes ◽  
Cor D. Schoen ◽  
Jos C. Arents ◽  
Roel van Driel
1990 ◽  
Vol 96 (4) ◽  
pp. 668-673
Author(s):  
FANJA KESBEKE ◽  
PETER J. M. HAASTERT ◽  
RENÉ J. W. DE WIT ◽  
B. EWA SNAAR-JAGALSKA

Mutant Frigid A (fgdA) of Dictyostelium discoideum is defective in a functional Ga2 subunit of a G protein and is characterized by a complete blockade of the cyclic AMP-mediated sensory transduction steps, including cyclic AMP relay, chemotaxis and the cyclic GMP response. Folic acid-mediated transmembrane signal transduction was investigated in this mutant; the results show that: (1) cell surface folic acid receptors are present in fgdA mutants. (2) Folic acid induces intracellular responses, including activation of guanylate cyclase and chemotaxis. (3) The inhibitory effect of GTP on folic acid binding to membranes is present. (4) GTPγS binding and highaffinity GTPase are stimulated by folic acid. These data strongly suggest that folic acid receptors are coupled to guanylate cyclase and chemotaxis via a Ga protein that is different from Ga2. The results imply that surface receptors for cyclic AMP and folic acid are coupled to different G proteins.


1989 ◽  
Vol 9 (11) ◽  
pp. 4660-4669
Author(s):  
J Pavlovic ◽  
B Haribabu ◽  
R P Dottin

The signal transduction pathways that lead to gene induction are being intensively investigated in Dictyostelium discoideum. We have identified by deletion and transformation analysis a sequence element necessary for induction of a gene coding for uridine diphosphoglucose pyrophosphorylase (UDPGP1) of D. discoideum in response to extracellular cyclic AMP (cAMP). This regulatory element is located 380 base pairs upstream of the transcription start site and contains a G+C-rich partially palindromic sequence. It is not required for transcription per se but is required for induction of the gene in response to the stimulus of extracellular cAMP. The cAMP response sequence is also required for induction of the gene during normal development. A second A+T-rich cis-acting region located immediately downstream of the cAMP response sequence appears to be essential for the basal level of expression of the UDPGP1 gene. The position of the cAMP response element coincides with a DNase I-hypersensitive site that is observed when the UDPGP1 gene is actively transcribed.


1988 ◽  
Vol 128 (1) ◽  
pp. 158-163 ◽  
Author(s):  
Dorien J.M. Peters ◽  
David A. Knecht ◽  
William F. Loomis ◽  
Arturo De Lozanne ◽  
James Spudich ◽  
...  

1997 ◽  
Vol 17 (5) ◽  
pp. 429-473 ◽  
Author(s):  
Edward N. Pugh ◽  
Teresa Duda ◽  
Ari Sitaramayya ◽  
Rameshwar K. Sharma

Almost three decades of research in the field of photoreceptor guanylate cyclases are discussed in this review. Primarily, it focuses on the members of membrane-bound guanylate cyclases found in the outer segments of vertebrate rods. These cyclases represent a new guanylate cyclase subfamily, termed ROS-GC, which distinguishes itself from the peptide receptor guanylate cyclase family that it is not extracellularly regulated. It is regulated, instead, by the intracellularly-generated Ca2+ signals. A remarkable feature of this regulation is that ROS-GC is a transduction switch for both the low and high Ca2+ signals. The low Ca2+ signal transduction pathway is linked to phototransduction, but the physiological relevance of the high Ca2+ signal transduction pathway is not yet clear; it may be linked to neuronal synaptic activity. The review is divided into eight sections. In Section I, the field of guanylate cyclase is introduced and the scope of the review is briefly explained; Section II covers a brief history of the investigations and ideas surrounding the discovery of rod guanylate cyclase. The first five subsections of Section III review the experimental efforts to quantify the guanylate cyclase activity of rods, including in vitro and in situ biochemistry, and also the work done since 1988 in which guanylate cyclase activity has been determined. In the remaining three subsections an analytical evaluation of the Ca2+ modulation of the rod guanylate cyclase activity related to phototransduction is presented. Section IV deals with the issues of a biochemical nature: isolation and purification, subcellular localization and functional properties of rod guanylate cyclase. Section V summarizes work on the cloning of the guanylate cyclases, analysis of their primary structures, and determination of their location with in situ hybridization. Section VI summarizes studies on the regulation of guanylate cyclases, with a focus on guanylate cyclases activating proteins. In Section VII, the evidence about the localization and functional role of guanylate cyclases in other retinal cells, especially in “on-bipolar” cells, in which guanylate cyclase most likely plays a critical role in electrical signaling, is discussed. The review concludes with Section VIII, with remarks about the future directions of research on retinal guanylate cyclases.


1991 ◽  
Vol 260 (4) ◽  
pp. L207-L211 ◽  
Author(s):  
G. H. Gurtner ◽  
T. Burke-Wolin

Oxidants have complex effects on pulmonary vascular reactivity. They can stimulate production of vasoconstrictor arachidonate mediators and can also cause vasodilation through activation of guanylate cyclase. Oxidants can also inactivate vasomotor phenomenon by interfering with mechanisms of signal transduction or smooth muscle contraction. The final physiological response depends on the balance of these complex actions.


Sign in / Sign up

Export Citation Format

Share Document