Neuro-Computing Aspects in Motor Planning & Control

1990 ◽  
pp. 109-115
Author(s):  
Pietro Morasso ◽  
Gianni Vercelli ◽  
Renato Zaccaria
Keyword(s):  
2020 ◽  
Vol 29 (4) ◽  
pp. 2109-2130
Author(s):  
Lauren Bislick

Purpose This study continued Phase I investigation of a modified Phonomotor Treatment (PMT) Program on motor planning in two individuals with apraxia of speech (AOS) and aphasia and, with support from prior work, refined Phase I methodology for treatment intensity and duration, a measure of communicative participation, and the use of effect size benchmarks specific to AOS. Method A single-case experimental design with multiple baselines across behaviors and participants was used to examine acquisition, generalization, and maintenance of treatment effects 8–10 weeks posttreatment. Treatment was distributed 3 days a week, and duration of treatment was specific to each participant (criterion based). Experimental stimuli consisted of target sounds or clusters embedded nonwords and real words, specific to each participants' deficit. Results Findings show improved repetition accuracy for targets in trained nonwords, generalization to targets in untrained nonwords and real words, and maintenance of treatment effects at 10 weeks posttreatment for one participant and more variable outcomes for the other participant. Conclusions Results indicate that a modified version of PMT can promote generalization and maintenance of treatment gains for trained speech targets via a multimodal approach emphasizing repeated exposure and practice. While these results are promising, the frequent co-occurrence of AOS and aphasia warrants a treatment that addresses both motor planning and linguistic deficits. Thus, the application of traditional PMT with participant-specific modifications for AOS embedded into the treatment program may be a more effective approach. Future work will continue to examine and maximize improvements in motor planning, while also treating anomia in aphasia.


2015 ◽  
Vol 74 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Alexandre Coutté ◽  
Gérard Olivier ◽  
Sylvane Faure

Computer use generally requires manual interaction with human-computer interfaces. In this experiment, we studied the influence of manual response preparation on co-occurring shifts of attention to information on a computer screen. The participants were to carry out a visual search task on a computer screen while simultaneously preparing to reach for either a proximal or distal switch on a horizontal device, with either their right or left hand. The response properties were not predictive of the target’s spatial position. The results mainly showed that the preparation of a manual response influenced visual search: (1) The visual target whose location was congruent with the goal of the prepared response was found faster; (2) the visual target whose location was congruent with the laterality of the response hand was found faster; (3) these effects have a cumulative influence on visual search performance; (4) the magnitude of the influence of the response goal on visual search is marginally negatively correlated with the rapidity of response execution. These results are discussed in the general framework of structural coupling between perception and motor planning.


2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel H. Blustein ◽  
Ahmed W. Shehata ◽  
Erin S. Kuylenstierna ◽  
Kevin B. Englehart ◽  
Jonathon W. Sensinger

AbstractWhen a person makes a movement, a motor error is typically observed that then drives motor planning corrections on subsequent movements. This error correction, quantified as a trial-by-trial adaptation rate, provides insight into how the nervous system is operating, particularly regarding how much confidence a person places in different sources of information such as sensory feedback or motor command reproducibility. Traditional analysis has required carefully controlled laboratory conditions such as the application of perturbations or error clamping, limiting the usefulness of motor analysis in clinical and everyday environments. Here we focus on error adaptation during unperturbed and naturalistic movements. With increasing motor noise, we show that the conventional estimation of trial-by-trial adaptation increases, a counterintuitive finding that is the consequence of systematic bias in the estimate due to noise masking the learner’s intention. We present an analytic solution relying on stochastic signal processing to reduce this effect of noise, producing an estimate of motor adaptation with reduced bias. The result is an improved estimate of trial-by-trial adaptation in a human learner compared to conventional methods. We demonstrate the effectiveness of the new method in analyzing simulated and empirical movement data under different noise conditions.


2020 ◽  
Author(s):  
Valentina Truppa ◽  
Gloria Sabbatini ◽  
Patricia Izar ◽  
Dorothy M. Fragaszy ◽  
Elisabetta Visalberghi

2018 ◽  
Vol 120 (1) ◽  
pp. 239-249 ◽  
Author(s):  
James E. Gehringer ◽  
David J. Arpin ◽  
Elizabeth Heinrichs-Graham ◽  
Tony W. Wilson ◽  
Max J. Kurz

Although it is well appreciated that practicing a motor task updates the associated internal model, it is still unknown how the cortical oscillations linked with the motor action change with practice. The present study investigates the short-term changes (e.g., fast motor learning) in the α- and β-event-related desynchronizations (ERD) associated with the production of a motor action. To this end, we used magnetoencephalography to identify changes in the α- and β-ERD in healthy adults after participants practiced a novel isometric ankle plantarflexion target-matching task. After practicing, the participants matched the targets faster and had improved accuracy, faster force production, and a reduced amount of variability in the force output when trying to match the target. Parallel with the behavioral results, the strength of the β-ERD across the motor-planning and execution stages was reduced after practice in the sensorimotor and occipital cortexes. No pre/postpractice changes were found in the α-ERD during motor planning or execution. Together, these outcomes suggest that fast motor learning is associated with a decrease in β-ERD power. The decreased strength likely reflects a more refined motor plan, a reduction in neural resources needed to perform the task, and/or an enhancement of the processes that are involved in the visuomotor transformations that occur before the onset of the motor action. These results may augment the development of neurologically based practice strategies and/or lead to new practice strategies that increase motor learning. NEW & NOTEWORTHY We aimed to determine the effects of practice on the movement-related cortical oscillatory activity. Following practice, we found that the performance of the ankle plantarflexion target-matching task improved and the power of the β-oscillations decreased in the sensorimotor and occipital cortexes. These novel findings capture the β-oscillatory activity changes in the sensorimotor and occipital cortexes that are coupled with behavioral changes to demonstrate the effects of motor learning.


Sign in / Sign up

Export Citation Format

Share Document