Cytokinesis: The Mechanism of Formation of the Contractile Ring in Animal Cell Division

Author(s):  
Albert K. Harris
2016 ◽  
Vol 212 (1) ◽  
pp. 39-49 ◽  
Author(s):  
Shawn N. Jordan ◽  
Tim Davies ◽  
Yelena Zhuravlev ◽  
Julien Dumont ◽  
Mimi Shirasu-Hiza ◽  
...  

Cytokinesis, the physical division of one cell into two, is thought to be fundamentally similar in most animal cell divisions and driven by the constriction of a contractile ring positioned and controlled solely by the mitotic spindle. During asymmetric cell divisions, the core polarity machinery (partitioning defective [PAR] proteins) controls the unequal inheritance of key cell fate determinants. Here, we show that in asymmetrically dividing Caenorhabditis elegans embryos, the cortical PAR proteins (including the small guanosine triphosphatase CDC-42) have an active role in regulating recruitment of a critical component of the contractile ring, filamentous actin (F-actin). We found that the cortical PAR proteins are required for the retention of anillin and septin in the anterior pole, which are cytokinesis proteins that our genetic data suggest act as inhibitors of F-actin at the contractile ring. Collectively, our results suggest that the cortical PAR proteins coordinate the establishment of cell polarity with the physical process of cytokinesis during asymmetric cell division to ensure the fidelity of daughter cell formation.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Rachel M. Rudlaff ◽  
Stephan Kraemer ◽  
Vincent A. Streva ◽  
Jeffrey D. Dvorin

2019 ◽  
Vol 30 (8) ◽  
pp. 992-1007 ◽  
Author(s):  
Zachary T. Swider ◽  
Rachel K. Ng ◽  
Ramya Varadarajan ◽  
Carey J. Fagerstrom ◽  
Nasser M. Rusan

Cell division is critical for development, organ growth, and tissue repair. The later stages of cell division include the formation of the microtubule (MT)-rich central spindle in anaphase, which is required to properly define the cell equator, guide the assembly of the acto-myosin contractile ring and ultimately ensure complete separation and isolation of the two daughter cells via abscission. Much is known about the molecular machinery that forms the central spindle, including proteins needed to generate the antiparallel overlapping interzonal MTs. One critical protein that has garnered great attention is the protein regulator of cytokinesis 1, or Fascetto (Feo) in Drosophila, which forms a homodimer to cross-link interzonal MTs, ensuring proper central spindle formation and cytokinesis. Here, we report on a new direct protein interactor and regulator of Feo we named Feo interacting protein (FIP). Loss of FIP results in a reduction in Feo localization, rapid disassembly of interzonal MTs, and several defects related to cytokinesis failure, including polyploidization of neural stem cells. Simultaneous reduction in Feo and FIP results in very large, tumorlike DNA-filled masses in the brain that contain hundreds of centrosomes. In aggregate, our data show that FIP acts directly on Feo to ensure fully accurate cell division.


1978 ◽  
Vol 95 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Darrell H. Carney ◽  
Kevin C. Glenn ◽  
Dennis D. Cunningham
Keyword(s):  

2014 ◽  
Vol 25 (6) ◽  
pp. 753-762 ◽  
Author(s):  
Dana M. Alessi Wolken ◽  
Joseph McInnes ◽  
Liza A. Pon

Whereas actomyosin and septin ring organization and function in cytokinesis are thoroughly described, little is known regarding the mechanisms by which the actomyosin ring interacts with septins and associated proteins to coordinate cell division. Here we show that the protein product of YPL158C, Aim44p, undergoes septin-dependent recruitment to the site of cell division. Aim44p colocalizes with Myo1p, the type II myosin of the contractile ring, throughout most of the cell cycle. The Aim44p ring does not contract when the actomyosin ring closes. Instead, it forms a double ring that associates with septin rings on mother and daughter cells after cell separation. Deletion of AIM44 results in defects in contractile ring closure. Aim44p coimmunoprecipitates with Hof1p, a conserved F-BAR protein that binds both septins and type II myosins and promotes contractile ring closure. Deletion of AIM44 results in a delay in Hof1p phosphorylation and altered Hof1p localization. Finally, overexpression of Dbf2p, a kinase that phosphorylates Hof1p and is required for relocalization of Hof1p from septin rings to the contractile ring and for Hof1p-triggered contractile ring closure, rescues the cytokinesis defect observed in aim44∆ cells. Our studies reveal a novel role for Aim44p in regulating contractile ring closure through effects on Hof1p.


2009 ◽  
Vol 20 (16) ◽  
pp. 3646-3659 ◽  
Author(s):  
K. Adam Bohnert ◽  
Jun-Song Chen ◽  
Dawn M. Clifford ◽  
Craig W. Vander Kooi ◽  
Kathleen L. Gould

The chromosomal passenger complex (CPC) regulates various events in cell division. This complex is composed of a catalytic subunit, Aurora B kinase, and three nonenzymatic subunits, INCENP, Survivin, and Borealin. Together, these four subunits interdependently regulate CPC function, and they are highly conserved among eukaryotes. However, a Borealin homologue has never been characterized in the fission yeast, Schizosaccharomyces pombe . Here, we isolate a previously uncharacterized S. pombe protein through association with the Cdc14 phosphatase homologue, Clp1/Flp1, and identify it as a Borealin-like member of the CPC. Nbl1 (novel Borealin-like 1) physically associates with known CPC components, affects the kinase activity and stability of the S. pombe Aurora B homologue, Ark1, colocalizes with known CPC subunits during mitosis, and shows sequence similarity to human Borealin. Further analysis of the Clp1–Nbl1 interaction indicates that Clp1 requires CPC activity for proper accumulation at the contractile ring (CR). Consistent with this, we describe negative genetic interactions between mutant alleles of CPC and CR components. Thus, this study characterizes a fission yeast Borealin homologue and reveals a previously unrecognized connection between the CPC and the process of cytokinesis in S. pombe .


2003 ◽  
Vol 116 (21) ◽  
pp. 4277-4281 ◽  
Author(s):  
R. Saint

Sign in / Sign up

Export Citation Format

Share Document