Changes in Antibiotic Resistance in Tracheal Aspirates Following Selective Decontamination of the Digestive Tract

Author(s):  
M. Sydow ◽  
H. Burchardi ◽  
T. A. Crozier ◽  
R. Rüchel ◽  
C. Busse ◽  
...  
2011 ◽  
Vol 37 (9) ◽  
Author(s):  
María E. Ochoa-Ardila ◽  
Ana García-Cañas ◽  
Karen Gómez-Mediavilla ◽  
Ana González-Torralba ◽  
Inmaculada Alía ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 43
Author(s):  
Robin Janssen ◽  
Frans Van Workum ◽  
Nikolaj Baranov ◽  
Harmen Blok ◽  
Jaap ten Oever ◽  
...  

Infectious complications occur frequently after esophagectomy. Selective decontamination of the digestive tract (SDD) has been shown to reduce postoperative infections and anastomotic leakage in gastrointestinal surgery, but robust evidence for esophageal surgery is lacking. The aim was to evaluate the association between SDD and pneumonia, surgical-site infections (SSIs), anastomotic leakage, and 1-year mortality after esophagectomy. A retrospective cohort study was conducted in patients undergoing Ivor Lewis esophagectomy in four Dutch hospitals between 2012 and 2018. Two hospitals used SDD perioperatively and two did not. SDD consisted of an oral paste and suspension (containing amphotericin B, colistin, and tobramycin). The primary outcomes were 30-day postoperative pneumonia and SSIs. Secondary outcomes were anastomotic leakage and 1-year mortality. Logistic regression analyses were performed to determine the association between SDD and the relevant outcomes (odds ratio (OR)). A total of 496 patients were included, of whom 179 received SDD perioperatively and the other 317 patients did not receive SDD. Patients who received SDD were less likely to develop postoperative pneumonia (20.1% vs. 36.9%, p < 0.001) and anastomotic leakage (10.6% vs. 19.9%, p = 0.008). Multivariate analysis showed that SDD is an independent protective factor for postoperative pneumonia (OR 0.40, 95% CI 0.23–0.67, p < 0.001) and anastomotic leakage (OR 0.46, 95% CI 0.26–0.84, p = 0.011). Use of perioperative SDD seems to be associated with a lower risk of pneumonia and anastomotic leakage after esophagectomy.


2007 ◽  
Vol 73 (21) ◽  
pp. 6740-6747 ◽  
Author(s):  
Lilia Macovei ◽  
Ludek Zurek

ABSTRACT The influx of enterococcal antibiotic resistance (AR) and virulence genes from ready-to-eat food (RTEF) to the human digestive tract was assessed. Three RTEFs (chicken salad, chicken burger, and carrot cake) were sampled from five fast-food restaurants five times in summer (SU) and winter (WI). The prevalence of enterococci was significantly higher in SU (92.0% of salad samples and 64.0% of burger samples) than in WI (64.0% of salad samples and 24.0% of burger samples). The overall concentrations of enterococci during the two seasons were similar (∼103 CFU/g); the most prevalent were Enterococcus casseliflavus (41.5% of isolates) and Enterococcus hirae (41.5%) in WI and Enterococcus faecium (36.8%), E. casseliflavus (27.6%), and Enterococcus faecalis (22.4%) in SU. Resistance in WI was detected primarily to tetracycline (50.8%), ciprofloxacin (13.8%), and erythromycin (4.6%). SU isolates were resistant mainly to tetracycline (22.8%), erythromycin (22.1%), and kanamycin (13.0%). The most common tet gene was tet(M) (35.4% of WI isolates and 11.9% of SU isolates). The prevalence of virulence genes (gelE, asa1, cylA, and esp) and marker genes for clinical isolates (EF_0573, EF_0592, EF_0605, EF_1420, EF_2144, and pathogenicity island EF_0050) was low (≤12.3%). Genotyping of E. faecalis and E. faecium using pulsed-field gel electrophoresis revealed that the food contamination likely originated from various sources and that it was not clonal. Our conservative estimate (single AR gene copy per cell) for the influx of tet genes alone to the human digestive tract is 3.8 � 105 per meal (chicken salad). This AR gene influx is frequent because RTEFs are commonly consumed and that may play a role in the acquisition of AR determinants in the human digestive tract.


Sign in / Sign up

Export Citation Format

Share Document