Calcium Absorption. Vitamin D Effects on Rat Intestinal Calcium Transport Systems Depend on the State of Enterocyte Differentiation Along the Crypt-Villus Axis

Author(s):  
Milton M. Weiser ◽  
Jay Zelinski
2007 ◽  
Vol 85 (6) ◽  
pp. 569-581 ◽  
Author(s):  
Narattaphol Charoenphandhu ◽  
Nateetip Krishnamra

Prolactin has been shown to stimulate intestinal calcium absorption, increase bone turnover, and reduce renal calcium excretion. The small intestine, which is the sole organ supplying new calcium to the body, intensely expresses mRNAs and proteins of prolactin receptors, especially in the duodenum and jejunum, indicating the intestine as a target tissue of prolactin. A number of investigations show that prolactin is able to stimulate the intestinal calcium transport both in vitro and in vivo, whereas bromocriptine, which inhibits pituitary prolactin secretion, antagonizes its actions. In female rats, acute and long-term exposure to high prolactin levels significantly enhances the (i) transcellular active, (ii) solvent drag-induced, and (iii) passive calcium transport occurring in the small intestine. These effects are seen not only in pregnant and lactating animals, but are also observed in non-pregnant and non-lactating animals. Interestingly, young animals are more responsive to prolactin than adults. Prolactin-enhanced calcium absorption gradually diminishes with age, thus suggesting it has an age-dependent mode of action. Although prolactin's effects on calcium absorption are not directly vitamin D-dependent; a certain level of circulating vitamin D may be required for the basal expression of genes related to calcium transport. The aforementioned body of evidence supports the hypothesis that prolactin acts as a regulator of calcium homeostasis by controlling the intestinal calcium absorption. Cellular and molecular signal transductions of prolactin in the enterocytes are largely unknown, however, and still require investigation.


1992 ◽  
Vol 262 (5) ◽  
pp. G797-G805
Author(s):  
J. Takito ◽  
T. Shinki ◽  
H. Tanaka ◽  
T. Suda

The role of the calcium pump in the stimulation of intestinal calcium transport activity by 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3] was examined in chicks. The in situ intestinal absorption of calcium increased approximately threefold in the duodenum, jejunum, and ileum 6 h after a single injection of 625 ng of 1 alpha,25(OH)2D3 into vitamin D-deficient chicks. The same treatment also increased approximately twofold the rate of ATP-dependent calcium uptake by the basolateral membrane vesicles (BL) isolated from those three sites. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that a Mg(2+)-dependent calcium-stimulated phosphorylated intermediate with an apparent molecular mass of 105 kDa appeared in the BL. The 1 alpha,25(OH)2D3 treatment gave no change in the levels of the intermediate. Pretreatment of the BL with alkaline phosphatase decreased the calcium uptake by the BL isolated from 1 alpha,25(OH)2D3-treated chicks, but it had little effect on the uptake by the BL from vitamin D-deficient chicks. These results suggest that at an early stage of the 1 alpha,25(OH)2D3-induced intestinal calcium transport process, the vitamin regulates the calcium-pumping activity of chick intestinal BL by phosphorylation and dephosphorylation but not by a stoichiometric change in the pump.


1984 ◽  
Vol 246 (3) ◽  
pp. G268-G273
Author(s):  
M. J. Favus ◽  
C. B. Langman

To determine whether prior vitamin D intake influences the intestinal calcium absorptive action of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], we measured in vitro the two unidirectional transepithelial fluxes of calcium across descending colon segments from rats fed either a vitamin D-deficient or normal diet and injected with either 10, 25, or 75 ng of 1,25(OH)2D3 or vehicle alone. Vitamin D deficiency abolished net calcium absorption [J net, -2 +/- 2 vs. 12 +/- 2 (SE) nmol X cm-2 X h-1, P less than 0.001], and 10 ng of 1,25(OH)2D3 raised J net to levels found in normal rats. Larger doses (25 and 75 ng) increased J net above levels in normal rats given the same dose. In normal rats only 75 ng of 1,25(OH)2D3 increased calcium J net above vehicle control values (12 +/- 2 vs. 38 +/- 4 nmol X cm-2 X h-1, P less than 0.001). Circulating 1,25(OH)2D3 measured by radioreceptor assay was well correlated with calcium transport. For each dose of 1,25(OH)2D3 higher serum 1,25(OH)2D3 levels were reached in vitamin D-deficient rats. Only the 75-ng dose increased circulating 1,25(OH)2D3 and colonic calcium transport in normal rats. Intravenous [3H]-1,25(OH)2D3 disappeared more rapidly from the circulation of normal rats, suggesting that accelerated metabolic degradative processes for 1,25(OH)2D3 may be present in normal but not in vitamin D-deficient rats and may account for the lack of a biological response to 1,25(OH)2D3 in normal animals.


Endocrinology ◽  
2010 ◽  
Vol 151 (7) ◽  
pp. 2974-2984 ◽  
Author(s):  
Dare V. Ajibade ◽  
Puneet Dhawan ◽  
Adam J. Fechner ◽  
Mark B. Meyer ◽  
J. Wesley Pike ◽  
...  

Increased calcium transport has been observed in vitamin D-deficient pregnant and lactating rats, indicating that another factor besides 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is involved in intestinal calcium transport. To investigate prolactin as a hormone involved in calcium homeostasis, vitamin D-deficient male mice were injected with 1,25(OH)2D3, prolactin, or prolactin + 1,25(OH)2D3. Prolactin alone (1 μg/g body weight 48, 24, and 4 h before termination) significantly induced duodenal transient receptor potential vanilloid type 6 (TRPV6) mRNA (4-fold) but caused no change in calbindin-D9k. Combined treatment with 1,25(OH)2D3 and prolactin resulted in an enhancement of the 1,25(OH)2D3 induction of duodenal TRPV6 mRNA, calbindin-D9k mRNA, and an induction of duodenal calcium transport [P < 0.05 compared with 1,25(OH)2D3 alone]. Because lactation is associated with an increase in circulating 1,25(OH)2D3, experiments were done to determine whether prolactin also has a direct effect on induction of 25-hydroxyvitamin D3 1α hydroxylase [1α(OH)ase]. Using AOK B-50 cells cotransfected with the prolactin receptor and the mouse 1α(OH)ase promoter −1651/+22 cooperative effects between prolactin and signal transducer and activator of transcription 5 were observed in the regulation of 1α(OH)ase. In addition, in prolactin receptor transfected AOK B-50 cells, prolactin treatment (400 ng/ml) and signal transducer and activator of transcription 5 significantly induced 1α(OH)ase protein as determined by Western blot analysis. Thus, prolactin, by multiple mechanisms, including regulation of vitamin D metabolism, induction of TRPV6 mRNA, and cooperation with 1,25(OH)2D3 in induction of intestinal calcium transport genes and intestinal calcium transport, can act as an important modulator of vitamin D-regulated calcium homeostasis.


1985 ◽  
Vol 248 (6) ◽  
pp. G676-G681 ◽  
Author(s):  
M. J. Favus ◽  
E. Angeid-Backman

To determine whether calcium transport across rat cecum is vitamin D dependent, we measured in vitro bidirectional calcium fluxes under short-circuited conditions across cecum from rats that were vitamin D deficient, vitamin D replete, or vitamin D deficient or vitamin D replete and injected with either 10, 25, or 75 ng of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] daily for 4 days before study. Vitamin D deficiency decreased net calcium absorption (Jnet) by reducing the mucosal-to-serosal absorptive flux (Jm----s) from 168 +/- 18 to 33 +/- 5 nmol X cm-2 X h-1 (mean +/- SE, P less than 0.0001). Twenty-five nanograms of 1,25(OH)2D3 raised Jm----s to 124 +/- 17 nmol X cm-2 X h-1, not different from values in vitamin D-replete rats. Although active calcium absorption by cecum appears to respond to vitamin D, calcium Jm----s is near maximal under normal conditions, and further stimulation follows only pharmacological doses of 1,25(OH)2D3. The in vitro addition of the calcium channel blocker verapamil (5 X 10(-5) M) to the mucosal side of cecum from vitamin D-replete rats reduced calcium Jm----s, but lower concentrations of verapamil or nitrendipine (10(-5) to 10(-9) M) did not reduce calcium Jm----s. The lack of inhibition by low concentrations of channel blockers suggest that the plasma membrane channels for calcium translocation across intestinal epithelium may not be analogous to voltage-dependent calcium channels in excitable tissue. The inhibition of cecal calcium transport that was blocked by high concentrations of verapamil may represent a nonspecific effect of the agent.


1983 ◽  
Vol 244 (6) ◽  
pp. G695-G700 ◽  
Author(s):  
D. Pansu ◽  
C. Bellaton ◽  
C. Roche ◽  
F. Bronner

An in situ ligated loop procedure was applied to dissect transmural calcium transport in the intestine into two components, a saturable and a nonsaturable process. The existence of two such processes was confirmed in the duodenum, but ileal calcium transport was devoid of the saturable component. There was a small saturable component in the upper jejunum. The level of CaBP, the vitamin D-dependent cytosolic calcium-binding protein (Mr, approximately or equal to 9,000), corresponded to the magnitude of the saturable component. No CaBP was detected in the ileum. Vitamin D dependence of the saturable component was established by inducing it in the duodenum of vitamin D-deficient animals following intraperitoneal injection of 1,25-dihydroxyvitamin D3. In these same animals, conversely, the ileum did not respond to exogenous 1,25-dihydroxyvitamin D3. This confirms the absence in the ileum of the saturable component of transmural calcium movement and the fact that the nonsaturable component is not vitamin D dependent. Everted sac experiments also showed that duodenal sacs from vitamin D-replete or -repleted animals transported calcium against a chemical gradient, whereas ileal sacs did not. Vitamin D regulation of intestinal calcium absorption thus occurs only in the proximal intestine, even though calcium is absorbed down its chemical gradient all along the small intestine.


Sign in / Sign up

Export Citation Format

Share Document