Shell Finite Element for Deep Drawing Problems: Computational Aspects and Results

Author(s):  
J. M. Roelandt ◽  
J. L. Batoz
2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Miguel Abambres

A 2nd order inelastic Generalised Beam Theory (GBT) formulation based on the J2 flow theory is proposed, being a promising alternative to the shell finite element method. Its application is illustrated for an I-section beam and a lipped-C column. GBT results were validated against ABAQUS, namely concerning equilibrium paths, deformed configurations, and displacement profiles. It was concluded that the GBT modal nature allows (i) precise results with only 22% of the number of dof required in ABAQUS, as well as (ii) the understanding (by means of modal participation diagrams) of the behavioral mechanics in any elastoplastic stage of member deformation .


2018 ◽  
Author(s):  
Miguel Abambres

Original Generalized Beam Theory (GBT) formulations for elastoplastic first and second order (postbuckling) analyses of thin-walled members are proposed, based on the J2 theory with associated flow rule, and valid for (i) arbitrary residual stress and geometric imperfection distributions, (ii) non-linear isotropic materials (e.g., carbon/stainless steel), and (iii) arbitrary deformation patterns (e.g., global, local, distortional, shear). The cross-section analysis is based on the formulation by Silva (2013), but adopts five types of nodal degrees of freedom (d.o.f.) – one of them (warping rotation) is an innovation of present work and allows the use of cubic polynomials (instead of linear functions) to approximate the warping profiles in each sub-plate. The formulations are validated by presenting various illustrative examples involving beams and columns characterized by several cross-section types (open, closed, (un) branched), materials (bi-linear or non-linear – e.g., stainless steel) and boundary conditions. The GBT results (equilibrium paths, stress/displacement distributions and collapse mechanisms) are validated by comparison with those obtained from shell finite element analyses. It is observed that the results are globally very similar with only 9% and 21% (1st and 2nd order) of the d.o.f. numbers required by the shell finite element models. Moreover, the GBT unique modal nature is highlighted by means of modal participation diagrams and amplitude functions, as well as analyses based on different deformation mode sets, providing an in-depth insight on the member behavioural mechanics in both elastic and inelastic regimes.


2012 ◽  
Vol 504-506 ◽  
pp. 637-642 ◽  
Author(s):  
Hamdi Aguir ◽  
J.L. Alves ◽  
M.C. Oliveira ◽  
L.F. Menezes ◽  
Hedi BelHadjSalah

This paper deals with the identification of the anisotropic parameters using an inverse strategy. In the classical inverse methods, the inverse analysis is generally coupled with a finite element code, which leads to a long computational time. In this work an inverse analysis strategy coupled with an artificial neural network (ANN) model is proposed. This method has the advantage of being faster than the classical one. To test and validate the proposed approach an experimental cylindrical cup deep drawing test is used in order to identify the orthotropic material behaviour. The ANN model is trained by finite element simulations of this experimental test. To reduce the gap between the experimental responses and the numerical ones, the proposed method is coupled with an optimization procedure based on the genetic algorithm (GA) to identify the Cazacu and Barlat’2001 material parameters of a standard mild steel DC06.


2011 ◽  
Vol 474-476 ◽  
pp. 251-254
Author(s):  
Jian Jun Wu ◽  
Wei Liu ◽  
Yu Jing Zhao

The multi-step forward finite element method is presented for the numerical simulation of multi-step sheet metal forming. The traditional constitutive relationship is modified according to the multi-step forming processes, and double spreading plane based mapping method is used to obtain the initial solutions of the intermediate configurations. To verify the multi-step forward FEM, the two-step simulation of a stepped box deep-drawing part is carried out as it is in the experiment. The comparison with the results of the incremental FEM and test shows that the multi-step forward FEM is efficient for the numerical simulation of multi-step sheet metal forming processes.


Acta Numerica ◽  
2001 ◽  
Vol 10 ◽  
pp. 215-250 ◽  
Author(s):  
Dominique Chapelle

This article, a companion to the article by Philippe G. Ciarlet on the mathematical modelling of shells also in this issue of Acta Numerica, focuses on numerical issues raised by the analysis of shells.Finite element procedures are widely used in engineering practice to analyse the behaviour of shell structures. However, the concept of ‘shell finite element’ is still somewhat fuzzy, as it may correspond to very different ideas and techniques in various actual implementations. In particular, a significant distinction can be made between shell elements that are obtained via the discretization of shell models, and shell elements – such as the general shell elements – derived from 3D formulations using some kinematic assumptions, without the use of any shell theory. Our first objective in this paper is to give a unified perspective of these two families of shell elements. This is expected to be very useful as it paves the way for further thorough mathematical analyses of shell elements. A particularly important motivation for this is the understanding and treatment of the deficiencies associated with the analysis of thin shells (among which is the locking phenomenon). We then survey these deficiencies, in the framework of the asymptotic behaviour of shell models. We conclude the article by giving some detailed guidelines to numerically assess the performance of shell finite elements when faced with these pathological phenomena, which is essential for the design of improved procedures.


Sign in / Sign up

Export Citation Format

Share Document