Disruption of Centromere Function by 2-Aminopurine

Author(s):  
Robert L. Margolis ◽  
Paul R. Andreassen ◽  
Douglas K. Palmer
Keyword(s):  
2005 ◽  
Vol 25 (23) ◽  
pp. 10315-10328 ◽  
Author(s):  
Yukinori Minoshima ◽  
Tetsuya Hori ◽  
Masahiro Okada ◽  
Hiroshi Kimura ◽  
Tokuko Haraguchi ◽  
...  

ABSTRACT We identified CENP-50 as a novel kinetochore component. We found that CENP-50 is a constitutive component of the centromere that colocalizes with CENP-A and CENP-H throughout the cell cycle in vertebrate cells. To determine the precise role of CENP-50, we examined its role in centromere function by generating a loss-of-function mutant in the chicken DT40 cell line. The CENP-50 knockout was not lethal; however, the growth rate of cells with this mutation was slower than that of wild-type cells. We observed that the time for CENP-50-deficient cells to complete mitosis was longer than that for wild-type cells. Centromeric localization of CENP-50 was abolished in both CENP-H- and CENP-I-deficient cells. Coimmunoprecipitation experiments revealed that CENP-50 interacted with the CENP-H/CENP-I complex in chicken DT40 cells. We also observed severe mitotic defects in CENP-50-deficient cells with apparent premature sister chromatid separation when the mitotic checkpoint was activated, indicating that CENP-50 is required for recovery from spindle damage.


2000 ◽  
Vol 113 (11) ◽  
pp. 1939-1950 ◽  
Author(s):  
D.A. Starr ◽  
R. Saffery ◽  
Z. Li ◽  
A.E. Simpson ◽  
K.H. Choo ◽  
...  

HZwint-1 (Human ZW10 interacting protein-1) was identified in a yeast two hybrid screen for proteins that interact with HZW10. HZwint-1 cDNA encodes a 43 kDa protein predicted to contain an extended coiled-coil domain. Immunofluorescence studies with sera raised against HZwint-1 protein revealed strong kinetochore staining in nocodazole-arrested chromosome spreads. This signal co-localizes at the kinetochore with HZW10, at a position slightly outside of the central part of the centromere as revealed by staining with a CREST serum. The kinetochore localization of HZwint-1 has been confirmed by following GFP fluorescence in HeLa cells transiently transfected with a plasmid encoding a GFP/HZwint-1 fusion protein. In cycling HeLa cells, HZwint-1 localizes to the kinetochore of prophase HeLa cells prior to HZW10 localization, and remains at the kinetochore until late in anaphase. This localization pattern, combined with the two-hybrid results, suggests that HZwint-1 may play a role in targeting HZW10 to the kinetochore at prometaphase. HZwint-1 was also found to localize to neocentromeres and to the active centromere of dicentric chromosomes. HZwint-1 thus appears to associate with all active centromeres, implying that it plays an important role in correct centromere function.


1991 ◽  
Vol 11 (4) ◽  
pp. 2206-2215
Author(s):  
K M Hahnenberger ◽  
J Carbon ◽  
L Clarke

We have determined the structural organization and functional roles of centromere-specific DNA sequence repeats in cen1, the centromere region from chromosome I of the fission yeast Schizosaccharomyces pombe. cen1 is composed of various classes of repeated sequences designated K', K"(dgl), L, and B', arranged in a 34-kb inverted repeat surrounding a 4- to 5-kb nonhomologous central core. Artificial chromosomes containing various portions of the cen1 region were constructed and assayed for mitotic and meiotic centromere function in S. pombe. Deleting K' and L from the distal portion of one arm of the inverted repeat had no effect on mitotic centromere function but resulted in greatly increased precocious sister chromatid separation in the first meiotic division. A centromere completely lacking K' and L, but containing the central core, one copy of B' and K" in one arm, and approximately 2.5 kb of the core-proximal portion of B' in the other arm, was also fully functional mitotically but again did not maintain sister chromatid attachment in meiosis I. However, deletion of K" from this minichromosome resulted in complete loss of centromere function. Thus, one copy of at least a portion of the K" (dgl) repeat is absolutely required but is not sufficient for S. pombe centromere function. The long centromeric inverted-repeat region must be relatively intact to maintain sister chromatid attachment in meiosis I.


2007 ◽  
Vol 19 (2) ◽  
pp. 524-533 ◽  
Author(s):  
Fangpu Han ◽  
Jonathan C. Lamb ◽  
Weichang Yu ◽  
Zhi Gao ◽  
James A. Birchler

2021 ◽  
Author(s):  
Yuting Liu ◽  
Kehui Wang ◽  
Li Huang ◽  
Jicheng Zhao ◽  
Xinpeng Chen ◽  
...  

Centromere identity is defined by nucleosomes containing CENP-A, a histone H3 variant. The deposition of CENP-A at centromeres is tightly regulated in a cell-cycle-dependent manner. We previously reported that the spatiotemporal control of centromeric CENP-A incorporation is mediated by the phosphorylation of CENP-A Ser68. However, a recent report argued that Ser68 phosphoregulation is dispensable for accurate CENP-A loading. Here, we report that the substitution of Ser68 of endogenous CENP-A with either Gln68 or Glu68 severely impairs CENP-A deposition and cell viability. We also find that mice harboring the corresponding mutations are lethal. Together, these results indicate that the dynamic phosphorylation of Ser68 ensures cell-cycle-dependent CENP-A deposition and cell viability.


1996 ◽  
Vol 109 (11) ◽  
pp. 2637-2648 ◽  
Author(s):  
K. Ekwall ◽  
E.R. Nimmo ◽  
J.P. Javerzat ◽  
B. Borgstrom ◽  
R. Egel ◽  
...  

Transcriptional silencing is known to occur at centromeres, telomeres and the mating type region in the nucleus of fission yeast, Schizosaccharomyces pombe. Mating-type silencing factors have previously been shown also to affect transcriptional repression within centromeres and to some extent at telomeres. Mutations in the clr4+, rik1+ and swi6+ genes dramatically reduce silencing at certain centromeric regions and cause elevated chromosome loss rates. Recently, Swi6p was found to co-localise with the three silent chromosomal regions. Here the involvement of clr4+, rik1+ and swi6+ in centromere function is investigated in further detail. Fluorescence in situ hybridisation (FISH) was used to show that, as in swi6 mutant cells, centromeres lag on late anaphase spindles in clr4 and rik1 mutant cells. This phenotype is consistent with a role for these three gene products in fission yeast centromere function. The Swi6 protein was found to be delocalised from all three silent chromosomal regions, and dispersed within the nucleus, in both clr4 and rik1 mutant cells. The phenotypic similarity observed in all three mutants is consistent with the products of both the clr4+ and rik1+ genes being required to recruit Swi6p to the centromere and other silent regions. Mutations in clr4, rik1 and swi6 also result in elevated sensitivity to reagents which destabilise microtubules and show a synergistic interaction with a mutation in the beta-tubulin gene (nda3). These observations suggest that clr4+ and rik1+ must play a role in the assembly of Swi6p into a transcriptionally silent, inaccessible chromatin structure at fission yeast centromeres which is required to facilitate interactions with spindle microtubules and to ensure normal chromosome segregation.


2020 ◽  
Vol 48 (8) ◽  
pp. 4161-4178 ◽  
Author(s):  
Natalia Y Kochanova ◽  
Tamas Schauer ◽  
Grusha Primal Mathias ◽  
Andrea Lukacs ◽  
Andreas Schmidt ◽  
...  

Abstract During interphase centromeres often coalesce into a small number of chromocenters, which can be visualized as distinct, DAPI dense nuclear domains. Intact chromocenters play a major role in maintaining genome stability as they stabilize the transcriptionally silent state of repetitive DNA while ensuring centromere function. Despite its biological importance, relatively little is known about the molecular composition of the chromocenter or the processes that mediate chromocenter formation and maintenance. To provide a deeper molecular insight into the composition of the chromocenter and to demonstrate the usefulness of proximity-based biotinylation as a tool to investigate those questions, we performed super resolution microscopy and proximity-based biotinylation experiments of three distinct proteins associated with the chromocenter in Drosophila. Our work revealed an intricate internal architecture of the chromocenter suggesting a complex multilayered structure of this intranuclear domain.


Sign in / Sign up

Export Citation Format

Share Document