Signal recognition particle (SRP), a ubiquitous initiator of protein translocation

EJB Reviews ◽  
1995 ◽  
pp. 55-74
Author(s):  
Henrich Lütcke
Science ◽  
2014 ◽  
Vol 344 (6179) ◽  
pp. 101-104 ◽  
Author(s):  
Jan Timo Grotwinkel ◽  
Klemens Wild ◽  
Bernd Segnitz ◽  
Irmgard Sinning

The signal recognition particle (SRP) is central to membrane protein targeting; SRP RNA is essential for SRP assembly, elongation arrest, and activation of SRP guanosine triphosphatases. In eukaryotes, SRP function relies on the SRP68-SRP72 heterodimer. We present the crystal structures of the RNA-binding domain of SRP68 (SRP68-RBD) alone and in complex with SRP RNA and SRP19. SRP68-RBD is a tetratricopeptide-like module that binds to a RNA three-way junction, bends the RNA, and inserts an α-helical arginine-rich motif (ARM) into the major groove. The ARM opens the conserved 5f RNA loop, which in ribosome-bound SRP establishes a contact to ribosomal RNA. Our data provide the structural basis for eukaryote-specific, SRP68-driven RNA remodeling required for protein translocation.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Thomas R Noriega ◽  
Jin Chen ◽  
Peter Walter ◽  
Joseph D Puglisi

The signal recognition particle (SRP) directs translating ribosome-nascent chain complexes (RNCs) that display a signal sequence to protein translocation channels in target membranes. All previous work on the initial step of the targeting reaction, when SRP binds to RNCs, used stalled and non-translating RNCs. This meant that an important dimension of the co-translational process remained unstudied. We apply single-molecule fluorescence measurements to observe directly and in real-time E. coli SRP binding to actively translating RNCs. We show at physiologically relevant SRP concentrations that SRP-RNC association and dissociation rates depend on nascent chain length and the exposure of a functional signal sequence outside the ribosome. Our results resolve a long-standing question: how can a limited, sub-stoichiometric pool of cellular SRP effectively distinguish RNCs displaying a signal sequence from those that are not? The answer is strikingly simple: as originally proposed, SRP only stably engages translating RNCs exposing a functional signal sequence.


2002 ◽  
Vol 184 (12) ◽  
pp. 3260-3267 ◽  
Author(s):  
R. Wesley Rose ◽  
Mechthild Pohlschröder

ABSTRACT The evolutionarily conserved signal recognition particle (SRP) plays an integral role in Sec-mediated cotranslational protein translocation and membrane protein insertion, as it has been shown to target nascent secretory and membrane proteins to the bacterial and eukaryotic translocation pores. However, little is known about its function in archaea, since characterization of the SRP in this domain of life has thus far been limited to in vitro reconstitution studies of heterologously expressed archaeal SRP components identified by sequence comparisons. In the present study, the genes encoding the SRP54, SRP19, and 7S RNA homologs (hv54h, hv19h, and hv7Sh, respectively) of the genetically and biochemically tractable archaeon Haloferax volcanii were cloned, providing the tools to analyze the SRP in its native host. As part of this analysis, an hv54h knockout strain was created. In vivo characterization of this strain revealed that the archaeal SRP is required for viability, suggesting that cotranslational protein translocation is an essential process in archaea. Furthermore, a method for the purification of this SRP employing nickel chromatography was developed in H. volcanii, allowing the successful copurification of (i) Hv7Sh with a histidine-tagged Hv54h, as well as (ii) Hv54h and Hv7Sh with a histidine-tagged Hv19h. These results provide the first in vivo evidence that these components interact in archaea. Such copurification studies will provide insight into the significance of the similarities and differences of the protein-targeting systems of the three domains of life, thereby increasing knowledge about the recognition of translocated proteins in general.


1993 ◽  
Vol 120 (5) ◽  
pp. 1113-1121 ◽  
Author(s):  
D Zopf ◽  
H D Bernstein ◽  
P Walter

The 54-kD subunit of the signal recognition particle (SRP54) binds to signal sequences of nascent secretory and transmembrane proteins. SRP54 consists of two separable domains, a 33-kD amino-terminal domain that contains a GTP-binding site (SRP54G) and a 22-kD carboxy-terminal domain (SRP54M) containing binding sites for both the signal sequence and SRP RNA. To examine the function of the two domains in more detail, we have purified SRP54M and used it to assemble a partial SRP that lacks the amino-terminal domain of SRP54 [SRP(-54G)]. This particle recognized signal sequences in two independent assays, albeit less efficiently than intact SRP. Analysis of the signal sequence binding activity of free SRP54 and SRP54M supports the conclusion that SRP54M binds signal sequences with lower affinity than the intact protein. In contrast, when SRP(-54G) was assayed for its ability to promote the translocation of preprolactin across microsomal membranes, it was completely inactive, apparently because it was unable to interact normally with the SRP receptor. These results imply that SRP54G plays an essential role in SRP-mediated targeting of nascent chain-ribosome complexes to the ER membrane and also influences signal sequence recognition, possibly by promoting a tighter association between signal sequences and SRP54M.


1983 ◽  
Vol 97 (6) ◽  
pp. 1693-1699 ◽  
Author(s):  
P Walter ◽  
G Blobel

Signal recognition particle (SRP) is a ribonucleoprotein consisting of six distinct polypeptides and one molecule of small cytoplasmic 7SL-RNA. The particle was previously shown to function in protein translocation across and protein integration into the endoplasmic reticulum membrane. Polypeptide specific antibodies were raised in rabbits against the 72,000-, 68,000-, and 54,000-mol-wt polypeptide of SRP. All three antibodies are shown to neutralize SRP activity in vitro. A solid phase radioimmune assay is described and used to follow SRP in various cell fractions. The partitioning of SRP is shown to be dependent on the ionic conditions of the fractionation. Under conditions approximating physiological ionic strength, SRP is found to be about equally distributed between a membrane associated (38%) and a free (15%) or ribosome associated (47%) state. Furthermore, it is shown that greater than 75% of the total cellular 7SL-RNA is associated with SRP polypeptide in these fractions. Thus it is likely that the major--if not the only--cellular function of 7SL-RNA is as a part of SRP.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ryoji Miyazaki ◽  
Yoshinori Akiyama ◽  
Hiroyuki Mori

Bacterial cells utilize monitoring substrates, which undergo force-sensitive translation elongation arrest, to feedback-regulate a Sec-related gene. Vibrio alginolyticus VemP controls the expression of SecD/F that stimulates a late step of translocation by undergoing export-regulated elongation arrest. Here, we attempted at delineating the pathway of the VemP nascent-chain interaction with Sec-related factors, and identified the signal recognition particle (SRP) and PpiD (a membrane-anchored periplasmic chaperone) in addition to other translocon components and a ribosomal protein as interacting partners. Our results showed that SRP is required for the membrane-targeting of VemP, whereas PpiD acts cooperatively with SecD/F in the translocation and arrest-cancelation of VemP. We also identified the conserved Arg-85 residue of VemP as a crucial element that confers PpiD-dependence to VemP and plays an essential role in the regulated arrest-cancelation. We propose a scheme of the arrest-cancelation processes of VemP, which likely monitors late steps in the protein translocation pathway.


1994 ◽  
Vol 5 (8) ◽  
pp. 887-897 ◽  
Author(s):  
P J Rapiejko ◽  
R Gilmore

The identification of GTP-binding sites in the 54-kDa subunit of the signal recognition particle (SRP) and in both the alpha and beta subunits of the SRP receptor has complicated the task of defining the step in the protein translocation reaction that is controlled by the GTP-binding site in the SRP. Ribonucleotide binding assays show that the purified SRP can bind GDP or GTP. However, crosslinking experiments show that SRP54 can recognize the signal sequence of a nascent polypeptide in the absence of GTP. Targeting of SRP-ribosome-nascent polypeptide complexes, formed in the absence of GTP, to microsomal membranes likewise proceeds normally. To separate the GTPase cycles of SRP54 and the alpha subunit of the SRP receptor (SR alpha), we employed an SR alpha mutant that displays a markedly reduced affinity for GTP. We observed that the dissociation of SRP54 from the signal sequence and the insertion of the nascent polypeptide into the translocation site could only occur when GTP binding to SR alpha was permitted. These data suggest that the GTP binding and hydrolysis cycles of both SRP54 and SR alpha are initiated upon formation of the SRP-SRP receptor complex.


2007 ◽  
Vol 178 (4) ◽  
pp. 611-620 ◽  
Author(s):  
Shu-ou Shan ◽  
Sowmya Chandrasekar ◽  
Peter Walter

During cotranslational protein targeting, two guanosine triphosphatase (GTPase) in the signal recognition particle (SRP) and its receptor (SR) form a unique complex in which hydrolyses of both guanosine triphosphates (GTP) are activated in a shared active site. It was thought that GTP hydrolysis drives the recycling of SRP and SR, but is not crucial for protein targeting. Here, we examined the translocation efficiency of mutant GTPases that block the interaction between SRP and SR at specific stages. Surprisingly, mutants that allow SRP–SR complex assembly but block GTPase activation severely compromise protein translocation. These mutations map to the highly conserved insertion box domain loops that rearrange upon complex formation to form multiple catalytic interactions with the two GTPs. Thus, although GTP hydrolysis is not required, the molecular rearrangements that lead to GTPase activation are essential for protein targeting. Most importantly, our results show that an elaborate rearrangement within the SRP–SR GTPase complex is required to drive the unloading and initiate translocation of cargo proteins.


Sign in / Sign up

Export Citation Format

Share Document