Maintaining performance of driver assistance systems and automated driving functions over the life cycle

Author(s):  
Helge Kiebach
Author(s):  
Pavlo Bazilinskyy ◽  
Joost C. F. De Winter

This study investigated peoples’ opinion on auditory interfaces in contemporary cars and their willingness to be exposed to auditory feedback in automated driving. We used an Internet-based survey to collect 1,205 responses from 91 countries. The participants stated their attitudes towards two existing auditory driver assistance systems, a parking assistant (PA) and forward collision warning system (FCWS), as well as towards a futuristic augmented sound system (FS) proposed for fully automated driving. The respondents were positive towards the PA and FCWS, and rated their willingness to have these systems as 3.87 and 3.77, respectively (1 = disagree strongly, 5 = agree strongly). The respondents tolerated the FS. The results showed that a female voice is the most preferred feedback mode for the support of takeover requests in highly automated driving, regardless of whether the respondents’ country is English speaking or not. The present results could be useful for designers of automated vehicles and other stakeholders.


Author(s):  
Dario Vangi ◽  
Antonio Virga ◽  
Michelangelo-Santo Gulino

Performance improvement of advanced driver assistance systems yields two major benefits: increasingly rapid progress towards autonomous driving and a simultaneous advance in vehicle safety. Integration of multiple advanced driver assistance systems leads to the so-called automated driving system, which can intervene jointly on braking and steering to avert impending crashes. Nevertheless, obstacles such as stationary vehicles and buildings can interpose between the opponent vehicles and the working field of advanced driver assistance systems’ sensors, potentially resulting in an inevitable collision state. Currently available devices cannot properly handle an inevitable collision state, because its occurrence is not subject to evaluations by the system. In the present work, criteria for intervention on braking and steering are introduced, based on the vehicle occupants’ injury risk. The system must monitor the surrounding and act on the degrees of freedom adapting to the evolution of the scenario, following an adaptive logic. The model-in-the-loop, software-in-the-loop and hardware-in-the-loop for such adaptive intervention are first introduced. To highlight the potential benefits offered by the adaptive advanced driver assistance systems, simulation software has been developed. The adaptive logic has been tested in correspondence of three inevitable collision state conditions between two motor vehicles: at each instant, the adaptive logic attitude of creating impact configurations associated with minimum injury risk is ultimately demonstrated.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 233 ◽  
Author(s):  
Nadja Schömig ◽  
Katharina Wiedemann ◽  
Sebastian Hergeth ◽  
Yannick Forster ◽  
Jeffrey Muttart ◽  
...  

Within a workshop on evaluation methods for automated vehicles (AVs) at the Driving Assessment 2019 symposium in Santa Fe; New Mexico, a heuristic evaluation methodology that aims at supporting the development of human–machine interfaces (HMIs) for AVs was presented. The goal of the workshop was to bring together members of the human factors community to discuss the method and to further promote the development of HMI guidelines and assessment methods for the design of HMIs of automated driving systems (ADSs). The workshop included hands-on experience of rented series production partially automated vehicles, the application of the heuristic assessment method using a checklist, and intensive discussions about possible revisions of the checklist and the method itself. The aim of the paper is to summarize the results of the workshop, which will be used to further improve the checklist method and make the process available to the scientific community. The participants all had previous experience in HMI design of driver assistance systems, as well as development and evaluation methods. They brought valuable ideas into the discussion with regard to the overall value of the tool against the background of the intended application, concrete improvements of the checklist (e.g., categorization of items; checklist items that are currently perceived as missing or redundant in the checklist), when in the design process the tool should be applied, and improvements for the usability of the checklist.


2021 ◽  

Current advanced driver-assistance systems (ADAS) and automated driving systems (ADS) rely on high-definition (HD) maps to enable a range of features and functions. These maps can be viewed as an additional sensor from an ADAS or ADS perspective as they impact overall system confidence, reduce system computational resource needs, help improve comfort and convenience, and ultimately contribute to system safety. However, HD mapping technology presents multiple challenges to the automotive industry. Unsettled Issues on HD Mapping Technology for Autonomous Driving and ADAS identifies the current unsettled issues that need to be addressed to reach the full potential of HD maps for ADAS and ADS technology and suggests some possible solutions for initial map creation, map change detection and updates, and map safety levels.


Sign in / Sign up

Export Citation Format

Share Document