Investigation of Sea Level Variations at Two Tide Gauges in Bulgaria

Author(s):  
L. G. Pashova
1973 ◽  
Vol 4 (1) ◽  
pp. 41-53 ◽  
Author(s):  
EUGENIE LISITZIN

An attempt is made to compute the sea level variations in the Gulf of Bothnia, which is isolated by islands and thresholds from the Baltic Sea proper. Observations from tide gauges during the 30-year period 1931–1960 were used. The effect of land uplift was taken into consideration. The maximum annual deviation in water volume from the long-term mean corresponded to 20.74 km3..


2015 ◽  
Vol 57 (6) ◽  
Author(s):  
Gaia Galassi ◽  
Giorgio Spada

<p>We have analyzed tide gauge data from the Adriatic Sea in order to assess the secular sea-level trend, its acceleration and the existence of possible cyclic variation. Analyzing the sea-level stack of all Adriatic tide gauges, we have obtained a trend of (1.25±0.04) mm yr<sup>-1</sup>, in agreement with that observed for the last century in the Mediterranean Sea, and an acceleration that is negligibile compared to the average global values. By means of the Ensemble Empirical Mode Decomposition technique, we have evidenced an energetic oscillation with a period of <span>∼</span>20 years that we relate with the recurrence of opposite phases in the Atlantic Multi–decadal Oscillation and North Atlantic Oscillation indices. We suggest that anomalously high sea-level values observed at all the Adriatic tide gauges during 2010 and 2011 can be explained by the rising phase of this 20 years cycle.</p>


1979 ◽  
Vol 30 (3) ◽  
pp. 295 ◽  
Author(s):  
DG Provis ◽  
R Radok

Sea level variations along Australia's coast were studied using records from tide gauges. The records were filtered to obtain two sets of time series, the short-term variations with periods between 1 and 20 days and the long-term variations with periods between 20 and 365 days. The coherence of the variations over long distances is noted and their magnitude is discussed with reference to possible causes.


2021 ◽  
Vol 13 (24) ◽  
pp. 5077
Author(s):  
Trine S. Dahl-Jensen ◽  
Ole B. Andersen ◽  
Simon D. P. Williams ◽  
Veit Helm ◽  
Shfaqat A. Khan

Studies of global sea level often exclude Tide Gauges (TGs) in glaciated regions due to vertical land movement. Recent studies show that geodetic GNSS stations can be used to estimate sea level by taking advantage of the reflections from the ocean surface using GNSS Interferometric Reflectometry (GNSS-IR). This method has the immediate benefit that one can directly correct for bedrock movements as measured by the GNSS station. Here we test whether GNSS-IR can be used for measurements of inter annual sea level variations in Thule, Greenland, which is affected by sea ice and icebergs during much of the year. We do this by comparing annual average sea level variations using the two methods from 2008–2019. Comparing the individual sea level measurements over short timescales we find a root mean square deviation (RMSD) of 13 cm, which is similar to other studies using spectral methods. The RMSD for the annual average sea level variations between TG and GNSS-IR is large (18 mm) compared to the estimated uncertainties concerning the measurements. We expect that this is in part due to the TG not being datum controlled. We find sea level trends from GNSS-IR and TG of −4 and −7 mm/year, respectively. The negative trend can be partly explained by a gravimetric decrease in sea level as a result of ice mass changes. We model the gravimetric sea level from 2008–2017 and find a trend of −3 mm/year.


2021 ◽  
Author(s):  
Fabio Mangini ◽  
Léon Chafik ◽  
Antonio Bonaduce ◽  
Laurent Bertino ◽  
Jan Even Øie Nilsen

Abstract. Sea-level variations in coastal areas can differ significantly from those in the nearby open ocean. Monitoring coastal sea-level variations is therefore crucial to understand how climate variability can affect the densely populated coastal regions of the globe. In this paper, we study the sea-level variability along the coast of Norway by means of in situ records, satellite altimetry data, and a network of eight hydrographic stations over a period spanning 16 years (from 2003 to 2018). At first, we evaluate the performance of the ALES-reprocessed coastal altimetry dataset by comparing it with the sea-level anomaly from tide gauges over a range of timescales, which include the long-term trend, the annual cycle and the detrended and deseasoned sea level anomaly. We find that coastal altimetry outperforms conventional altimetry products at most locations along the Norwegian coast. We later take advantage of the coastal altimetry dataset to perform a sea level budget along the Norwegian coast. We find that the thermosteric and the halosteric signals give a comparable contribution to the sea-level trend along the Norwegian coast, except for three, non-adjacent hydrographic stations, where salinity variations affect the sea-level trend more than temperature variations. We also find that the sea-level annual cycle is more affected by variations in temperature than in salinity, and that both temperature and salinity give a comparable contribution to the detrended and deseasoned sea-level along the entire Norwegian coast.


Sign in / Sign up

Export Citation Format

Share Document