Ultraviolet-Absorbing Barriers, an Efficient Integrated Pest Management Tool to Protect Greenhouses from Insects and Virus Diseases

2004 ◽  
pp. 319-335 ◽  
Author(s):  
Y. Antignus ◽  
D. Ben-Yakir
2008 ◽  
Vol 48 (12) ◽  
pp. 1574 ◽  
Author(s):  
H. B. Brier ◽  
D. A. H. Murray ◽  
L. J. Wilson ◽  
A. H. Nicholas ◽  
M. M. Miles ◽  
...  

The authors overview integrated pest management (IPM) in grain crops in north-eastern Australia, which is defined as the area north of latitude 32°S. Major grain crops in this region include the coarse grains (winter and summer cereals), oilseeds and pulses. IPM in these systems is complicated by the diversity of crops, pests, market requirements and cropping environments. In general, the pulse crops are at greatest risk, followed by oilseeds and then by cereal grains. Insecticides remain a key grain pest management tool in north-eastern Australia. IPM in grain crops has benefited considerably through the increased adoption of new, more selective insecticides and biopesticides for many caterpillar pests, in particular Helicoverpa spp. and loopers, and the identification of pest–crop scenarios where spraying is unnecessary (e.g. for most Creontiades spp. populations in soybeans). This has favoured the conservation of natural enemies in north-eastern Australia grain crops, and has arguably assisted in the management of silverleaf whitefly in soybeans in coastal Queensland. However, control of sucking pests and podborers such as Maruca vitrata remains a major challenge for IPM in summer pulses. Because these crops have very low pest-damage tolerances and thresholds, intervention with disruptive insecticides is frequently required, particularly during podfill. The threat posed by silverleaf whitefly demands ongoing multi-pest IPM research, development and extension as this pest can flare under favourable seasonal conditions, especially where disruptive insecticides are used injudiciously. The strong links between researchers and industry have facilitated the adoption of IPM practices in north-eastern Australia and augers well for future pest challenges and for the development and promotion of new and improved IPM tactics.


2022 ◽  
Author(s):  
Surendra K. Dara ◽  

This chapter covers the definition of biostimulants, brief summary of various categories, and how they are used for promoting plant growth, building soil structure, imparting stress tolerance, and contribute to pest and disease suppression. Strategies for using biostimulants as a part of IPM and some challenges and future opportunities were also discussed.


Author(s):  
J. R. Adams ◽  
G. J Tompkins ◽  
A. M. Heimpel ◽  
E. Dougherty

As part of a continual search for potential pathogens of insects for use in biological control or on an integrated pest management program, two bacilliform virus-like particles (VLP) of similar morphology have been found in the Mexican bean beetle Epilachna varivestis Mulsant and the house cricket, Acheta domesticus (L. ).Tissues of diseased larvae and adults of E. varivestis and all developmental stages of A. domesticus were fixed according to procedures previously described. While the bean beetles displayed no external symptoms, the diseased crickets displayed a twitching and shaking of the metathoracic legs and a lowered rate of activity.Examinations of larvae and adult Mexican bean beetles collected in the field in 1976 and 1977 in Maryland and field collected specimens brought into the lab in the fall and reared through several generations revealed that specimens from each collection contained vesicles in the cytoplasm of the midgut filled with hundreds of these VLP's which were enveloped and measured approximately 16-25 nm x 55-110 nm, the shorter VLP's generally having the greater width (Fig. 1).


2019 ◽  
Vol 30 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Elizabeth H. Beers ◽  
Adrian Marshall ◽  
Jim Hepler ◽  
Josh Milnes

2004 ◽  
Vol 10 (3) ◽  
pp. 22-25
Author(s):  
Sally Y. Shelton ◽  
John E. Simmons ◽  
Tom J.K. Strang

Sign in / Sign up

Export Citation Format

Share Document