Mixing interface algorithm for 3D turbulent flow analysis of the GAMM Francis turbine

2004 ◽  
pp. 359-372 ◽  
Author(s):  
Sebastian Muntean ◽  
Romeo F. Susan-Resiga ◽  
Ioan Anton
2013 ◽  
Vol 655-657 ◽  
pp. 227-230
Author(s):  
Ying Hu ◽  
Kun Wang

This paper introduces the 3D numerical simulation of unsteady turbulent flow in the entire flow passage of a water turbine model with CFD technology. A new and available method for the design of a Francis turbine has been explored. The boundary conditions have been implemented based on the 3D averaged N-S equations. The governing equations are discreted on space by the finite volume method and on time step by the finite difference method. The 3D unsteady turbulent flow in an entire Francis turbine model is calculated successfully using the CFX-TASCflow software and RNG k-εturbulence model. Transient flow fields are simulated in the spiral case, the distributor, the runner and the draft tube. It is presented in this paper that the computer simulation of the flow fields in components of the Francis turbine at the optimum operating condition. Meanwhile, the velocity and pressure at any points in the flow fields can be obtained so as to provide the great value on the performance prediction. According to the simulating results, the flow analysis and the design experience, the design of components in a Francis turbine model can be improved and optimized. In this way, designers may decrease numbers of test and shorten the period for a model. Therefore, the cost of research and produce can be reduced.


2004 ◽  
Vol 26 (3) ◽  
pp. 148-156
Author(s):  
Pham Thi Kim Loan ◽  
Bui Van Ga

This paper presents the use of a commercial Navier-Stokes turbulent flow code (FLUENT) as a mean to evaluate the behavior of a Francis turbine runner for the design and off-design conditions. The flow in the runner is analyzed numerically at different operating points. The numerical results permit to observe physical phenomena in the runner that are important in the process of hydraulic turbo machinery design. Values of different velocity components in the flow, blade pressure distribution ... given by the model are compared with experimental data at nominal and off-design flow conditions. Computer resource involves in the flow analysis should be compatible with the need of design process of a runner. Therefore 12 hours of CPU time can be considered as acceptable for calculating at each operating point on a computer workstation of medium size power.


Author(s):  
Sadao Kurosawa ◽  
Kiyoshi Matsumoto

In this paper, numerical method for predicting critical cavitation performance in a hydraulic turbine is presented. The prediction method is based on unsteady cavitation flow analysis to use bubble two-phase flow model. The prediction of the critical cavitation performance was carried out for the aixal hydraulic turbine and the francis turbine as a typical examples. Results compared to the experiment showed a good agreement for the volume of cavity and the performance drop off and it was recognized that this method could be used as an engineering tool of a hydraulic turbine development.


2016 ◽  
Author(s):  
Rana Roy Chowdhury ◽  
Suranjan Biswas ◽  
Md. Mahbubul Alam ◽  
A. K. M. Sadrul Islam

2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Wang Wenquan ◽  
Zhang Lixiang ◽  
Yan Yan ◽  
Guo Yakun

An innovative computational model is presented for the large eddy simulation (LES) of multidimensional unsteady turbulent flow problems in complex geometries. The main objectives of this research are to know more about the structure of turbulent flows, to identify their three-dimensional characteristic, and to study physical effects due to complex fluid flow. The filtered Navier-Stokes equations are used to simulate large scales; however, they are supplemented by dynamic subgrid-scale (DSGS) models to simulate the energy transfer from large scales toward subgrid-scales, where this energy will be dissipated by molecular viscosity. Based on the Taylor-Galerkin schemes for the convection-diffusion problems, this model is implemented in a three-dimensional finite element code using a three-step finite element method (FEM). Turbulent channel flow and flow over a backward-facing step are considered as a benchmark for validating the methodology by comparing with the direct numerical simulation (DNS) results or experimental data. Also, qualitative and quantitative aspects of three-dimensional complex turbulent flow in a strong 3D blade passage of a Francis turbine are analyzed.


2011 ◽  
Vol 16 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Ying Hu ◽  
Heming Cheng ◽  
Ji Hu ◽  
Xirong Li

Sign in / Sign up

Export Citation Format

Share Document