Introducing a New Radiation Detection Device Calibration Method and Estimating 3D Distance to Radiation Sources

Author(s):  
Pathum Rathnayaka ◽  
Seung-Hae Baek ◽  
Soon-Yong Park
2021 ◽  
Vol 13 (19) ◽  
pp. 3823
Author(s):  
Feinan Chen ◽  
Donggen Luo ◽  
Shuang Li ◽  
Benyong Yang ◽  
Liang Sun ◽  
...  

The directional polarimetric camera (DPC) on-board the GF-5A satellite is designed for atmospheric or water color detection, which requires high radiometric accuracy. Therefore, in-flight calibration is a prerequisite for its inversion application. For large field optical sensors, it is very challenging to ensure the consistency of radiation detection in the whole field of view in the space environment. Our work proposes a vicarious in-flight calibration method based on sea non-equipment sites (visible bands) and land non-equipment sites (all bands). Combined with environmental parameters and radiation transmission calculations, we evaluated the radiation detection accuracy of the 0° to 60° view zenith angle of the DPC in each band. Our calibration method is based on the single-day normalized radiance data measured by the DPC. Through data selection, enough calibration samples can be obtained in a single day (the number of desert samples is more than 5000, and the number of calibration samples of the ocean is more than 2.8×106). The measurements are compared with the simulation of 6SV VRT code or look-up tables. The massive amount of data averages the uncertainty of a single-point calculation. Although the uncertainty of a single sample is significant, the final fitting of the curve of the variation in the radiometric calibration coefficient with the observation angle can still keep the root mean squared error at approximately 2–3% or even lower, and for visible bands, the calibration results for both ocean sites and desert sites are in good agreement regarding the non-uniformity of the sensor.


DYNA ◽  
2020 ◽  
Vol 87 (215) ◽  
pp. 174-179
Author(s):  
Freddy Fuentes Robayo ◽  
Rafael Maria Gutierrez Salamanca

This paper presents the performance of a 3GEM in terms of identification of high and low beta energy radiation sources through the energy distribution of the main beta radiation sources used for industrial application 90Sr and 204Tl. We compare the beta radiation theoretical energy loss into the drift zone with experimental energy distribution at different 3GEM voltages. The experimental results show that the Most Probable Value (MPV) of the fitted Landau distribution obtained from 90Sr and 204Tl obtained a degree of error lower than 14% in comparison to the theoretical calculation. Additionally, high energy beta radiation source (90Sr) is identified in comparison to low energy (204Tl) - taking into account the MPV and sigma values from the fitted Landau distribution. These results are essential to design and implement a new application that utilizes the performance and special characteristics of the 3GEM for beta radiation detection and identification.


2021 ◽  
Vol 25 (4) ◽  
pp. 67-76
Author(s):  
Tomasz Sosnowski ◽  
Grzegorz Bieszczad ◽  
Sławomir Gogler ◽  
Henryk Madura ◽  
Mariusz Felczak ◽  
...  

The infrared camera detects infrared radiation from the observed objects, Its main element is the array of infrared detectors, which converts the received radiation into an electrical signal. The radiation sources recorded by the detector can be divided as useful, received from the observed scene, and useless received from such objects as the detector housing and lens elements. These unusable radiation sources have a significant impact on the design of the detector itself. The article presents a model of the detector housing and a quantitative analysis of the influence of various radiation sources on the effectiveness of radiation detection from the observed scene.


2017 ◽  
Vol 15 (08) ◽  
pp. 1740024 ◽  
Author(s):  
Galiya Kh. Kitaeva ◽  
Vladimir V. Kornienko

The impact of spatial limitation of the nonlinear interaction volume on the spontaneous parametric down-conversion spectra in a strongly nondegenerate regime is analyzed from the point of absolute calibration of the terahertz-wave nonlinear-optical detectors. We show that the idler wave angular resolution of the calibration method can be inherently low (about 1 to 10 degrees in lithium niobate crystals), and to fill all the input modes with external idler radiation, one has to take special care on geometry of the nonlinear interaction. Angular sensitivity distribution function is constructed, and a consecutive description is provided for both the parametric down-conversion and the external idler radiation detection processes.


2006 ◽  
Vol 133 ◽  
pp. 1173-1175
Author(s):  
C. A. Back ◽  
J. F. Seely ◽  
J. L. Weaver ◽  
U. Feldman ◽  
R. Tommasini ◽  
...  
Keyword(s):  

2020 ◽  
Vol 23 (1) ◽  
pp. 66-71
Author(s):  
E. A. Gurnevich ◽  
I. V. Moroz

The Smith-Purcell radiation of a charged particle moving in a periodic structure is analysed theoretically. The considered structure consists of two planar diffraction gratings with different periods which are formed by parallel conducting wires. The analytical expression for the spectral-angular distribution of radiation is obtained. It is shown that the angular distribution of radiation can be made narrower by using two gratings instead of one, and radiation intensity can be manipulated by parallel relative shift of gratings. The obtained results are of great importance for the research and development of high power radiation sources based on volume free-electron lasers.


Sign in / Sign up

Export Citation Format

Share Document