Machine Learning for Plant Leaf Analysis

2016 ◽  
pp. 57-79
Author(s):  
Paolo Remagnino ◽  
Simon Mayo ◽  
Paul Wilkin ◽  
James Cope ◽  
Don Kirkup
2020 ◽  
Vol 24 (6) ◽  
pp. 1311-1328
Author(s):  
Jozsef Suto

Nowadays there are hundreds of thousands known plant species on the Earth and many are still unknown yet. The process of plant classification can be performed using different ways but the most popular approach is based on plant leaf characteristics. Most types of plants have unique leaf characteristics such as shape, color, and texture. Since machine learning and vision considerably developed in the past decade, automatic plant species (or leaf) recognition has become possible. Recently, the automated leaf classification is a standalone research area inside machine learning and several shallow and deep methods were proposed to recognize leaf types. From 2007 to present days several research papers have been published in this topic. In older studies the classifier was a shallow method while in current works many researchers applied deep networks for classification. During the overview of plant leaf classification literature, we found an interesting deficiency (lack of hyper-parameter search) and a key difference between studies (different test sets). This work gives an overall review about the efficiency of shallow and deep methods under different test conditions. It can be a basis to further research.


Author(s):  
Swati Singh ◽  
Sheifali Gupta ◽  
Ankush Tanta ◽  
Rupesh Gupta

This paper proposes a novel algorithm of segmentation of diseased part in apple leaf images. In agriculture-based image processing, leaf diseases segmentation is the main processing task for region of interest extraction. It is also extremely important to segment the plant leaf from the background in case on live images. Automated segmentation of plant leaves from the background is a common challenge in the processing of plant images. Although numerous methods have been proposed, still it is tough to segment the diseased part of the leaf from the live leaf images accurately by one particular method. In the proposed work, leaves of apple having different background have been segmented. Firstly, the leaves have been enhanced by using Brightness-Preserving Dynamic Fuzzy Histogram Equalization technique and then the extraction of diseased apple leaf part is done using a novel extraction algorithm. Real-time plant leaf database is used to validate the proposed approach. The results of the proposed novel methodology give better results when compared to existing segmentation algorithms. From the segmented apple leaves, color and texture features are extracted which are further classified as marsonina coronaria or apple scab using different machine learning classifiers. Best accuracy of 96.4% is achieved using K nearest neighbor classifier.


Author(s):  
Malusi Sibiya ◽  
Mbuyu Sumbwanyambe

Machine learning systems use different algorithms to detect the diseases affecting the plant leaves. Nevertheless, selecting a suitable machine learning framework differs from study to study, depending on the features and complexity of the software packages. This paper introduces a taxonomic inspection of the literature in deep learning frameworks for the detection of plant leaf diseases. The objective of this study is to identify the dominating software frameworks in the literature for modelling machine learning plant leaf disease detecting systems.


Rice is one of the important food crops and the most staple food for half of the world population. Farmers are often faces several obstacles in paddy production because of various paddy leaf diseases. As a result, rice production is extensively reduced. For finding the paddy plant leaf diseases, there are many techniques are available in the computer vision-based area. Now, it is the main concern to fast and accurate recognition of paddy plant diseases in the initial stage. For this reason, we proposed a better approach for early paddy plant leaf disease detection by using simple image processing and machine learning techniques. There are four types of paddy leaf diseases are highlighted in this paper; which are Brown Spot, Sheath Blight, Blast Disease and Narrow Brown Spot. To do this, at first the required normal and diseased paddy plant leaf images are captured directly from different paddy fields. The unnecessary background of the leaves images are eliminated by using mask in the pre-processing section. Then output is fed into the segmentation part where K-means clustering is used to separate the normal portion and diseased portion of the leaf images. Finally, the mentioned diseases are classified using Support Vector Machine (SVM) algorithm. The accuracy of the system is 94%. This technique can be also applied anywhere in the agriculture industry for plant leaf diseases detection.


Sign in / Sign up

Export Citation Format

Share Document