The Evolutionary Annealing Method

Author(s):  
Alan J. Lockett
Keyword(s):  
Soft Matter ◽  
2021 ◽  
Author(s):  
Zhiyao Liu ◽  
Zheng Wang ◽  
Yuhua Yin ◽  
Run Jiang ◽  
Baohui Li

Phase behavior of ABC star terpolymers confined between two identical parallel surfaces is systematically studied with a simulated annealing method. Several phase diagrams are constructed for systems with different bulk...


2014 ◽  
Vol 887-888 ◽  
pp. 86-89
Author(s):  
Ying Liang Tian ◽  
Jing Zhang ◽  
Shi Bing Sun ◽  
Ji Ye Fan

In the paper, regarded SiO2-Al2O3-B2O3-RO system as basic composition, high-temperature glass glaze was prepared successfully by using Bi2O3 in place of Al2O3, and traditional melt annealing method was adopted .The influence of Bi2O3 on expansion coefficient, sintering temperature, electrical resistivity was investigated by DIL-2008, SJY sintering imager, Keythley2410. The results show that the sintering temperature of glass glaze has a wide range, which can reach 270°C, so it is easy to sinter; with the increasing of bismuth oxide content, expansion coefficient of glass glaze gradually increases, whereas sintering temperature and electrical resistivity continuously decreases.


2020 ◽  
Vol 51 (1) ◽  
pp. 1358-1361
Author(s):  
Takao Saito ◽  
Yosuke Kanzaki ◽  
Masahiko Miwa ◽  
Masaki Yamanaka ◽  
Yi Sun ◽  
...  

2007 ◽  
Vol 18 (17) ◽  
pp. 175604 ◽  
Author(s):  
A M Glushenkov ◽  
H Z Zhang ◽  
J Zou ◽  
G Q Lu ◽  
Y Chen

2016 ◽  
Vol 18 (42) ◽  
pp. 29435-29446 ◽  
Author(s):  
Zhuoran Wang ◽  
Samir Elouatik ◽  
George P. Demopoulos

The in situ Raman monitored annealing method is developed in this work to provide real-time information on phase formation and crystallinity evolution of kesterite deposited on a TiO2 mesoscopic scaffold.


2011 ◽  
Vol 13 (12) ◽  
pp. 2073-2079 ◽  
Author(s):  
Zongxin Ling ◽  
Mingbo Zheng ◽  
Qinglai Du ◽  
Yongwen Wang ◽  
Jiakui Song ◽  
...  
Keyword(s):  

1993 ◽  
Vol 115 (3) ◽  
pp. 312-321 ◽  
Author(s):  
Tien-Sheng Chang ◽  
E. B. Magrab

A methodology to attain the highest fundamental natural frequency of a printed wiring board by rearranging its components has been developed. A general two-dimensional rearrangement algorithm is developed by which the rearrangement of the component-lead-board (CLB) assemblies is performed automatically for any combination of equal size, unequal size, movable and immovable CLBs. This algorithm is also capable of incorporating two design restrictions: fixed (immovable) components and prohibited (non-swappable) areas. A highly computationally efficient objective function for the evaluation of the automatic rearrangement process is introduced, which is a linear function of the size of the individual CLBs that have been selected for each interchange. The simulated annealing method is adapted to solve the combinatorial rearrangement of the CLBs. Using 61 combinations of boundary conditions, equal and unequal sized CLBs, movable and immovable CLBs, various CLB groupings and sets of material properties, it is found that, when compared to the exact solution obtained by an exhaustive search method, the simulated annealing method obtained the highest fundamental natural frequency within 1 percent for 87 percent of the cases considered, within 0.5 percent for 72 percent of the cases and the true maximum in 43 percent of them. To further increase the fundamental natural frequency the introduction of a single interior point support is analyzed. Depending on the boundary conditions an additional increase in the maximum fundamental natural frequency of 44 to 198 percent can be obtained.


Sign in / Sign up

Export Citation Format

Share Document