Analysis and Design: Towards Large-Scale Reuse and Integration of Web User Interface Components

Author(s):  
Hao Han ◽  
Peng Gao ◽  
Yinxing Xue ◽  
Chuanqi Tao ◽  
Keizo Oyama
1999 ◽  
Vol 39 (4) ◽  
pp. 55-60 ◽  
Author(s):  
J. Alex ◽  
R. Tschepetzki ◽  
U. Jumar ◽  
F. Obenaus ◽  
K.-H. Rosenwinkel

Activated sludge models are widely used for planning and optimisation of wastewater treatment plants and on line applications are under development to support the operation of complex treatment plants. A proper model is crucial for all of these applications. The task of parameter calibration is focused in several papers and applications. An essential precondition for this task is an appropriately defined model structure, which is often given much less attention. Different model structures for a large scale treatment plant with circulation flow are discussed in this paper. A more systematic method to derive a suitable model structure is applied to this case. Results of a numerical hydraulic model are used for this purpose. The importance of these efforts are proven by a high sensitivity of the simulation results with respect to the selection of the model structure and the hydraulic conditions. Finally it is shown, that model calibration was possible only by adjusting to the hydraulic behaviour and without any changes of biological parameters.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 632
Author(s):  
Xiaozheng Wang ◽  
Minglun Zhang ◽  
Hongyu Zhou ◽  
Xiaomin Ren

The performance of the underwater optical wireless communication (UOWC) system is highly affected by seawater´s inherent optical properties and the solar radiation from sunlight, especially for a shallow environment. The multipath effect and degradations in signal-to-noise ratio (SNR) due to absorption, scattering, and ambient noises can significantly limit the viable communication range, which poses key challenges to its large-scale commercial applications. To this end, this paper proposes a unified model for underwater channel characterization and system performance analysis in the presence of solar noises utilizing a photon tracing algorithm. Besides, we developed a generic simulation platform with configurable parameters and self-defined scenarios via MATLAB. Based on this platform, a comprehensive investigation of underwater channel impairments was conducted including temporal and spatial dispersion, illumination distribution pattern, and statistical attenuation with various oceanic types. The impact of ambient noise at different operation depths on the bit error rate (BER) performance of the shallow UOWC system was evaluated under typical specifications. Simulation results revealed that the multipath dispersion is tied closely to the multiple scattering phenomenon. The delay spread and ambient noise effect can be mitigated by considering a narrow field of view (FOV) and it also enables the system to exhibit optimal performance on combining with a wide aperture.


Author(s):  
Luis A Leiva ◽  
Asutosh Hota ◽  
Antti Oulasvirta

Abstract Designers are increasingly using online resources for inspiration. How to best support design exploration without compromising creativity? We introduce and study Design Maps, a class of point-cloud visualizations that makes large user interface datasets explorable. Design Maps are computed using dimensionality reduction and clustering techniques, which we analyze thoroughly in this paper. We present concepts for integrating Design Maps into design tools, including interactive visualization, local neighborhood exploration and functionality to integrate existing solutions to the design at hand. These concepts were implemented in a wireframing tool for mobile apps, which was evaluated with actual designers performing realistic tasks. Overall, designers find Design Maps supporting their creativity (avg. CSI score of 74/100) and indicate that the maps producing consistent whitespacing within cloud points are the most informative ones.


2017 ◽  
Vol 50 (1) ◽  
pp. 3287-3293 ◽  
Author(s):  
Erik Frisk ◽  
Mattias Krysander ◽  
Daniel Jung

2015 ◽  
Vol 113 (9) ◽  
pp. 3432-3445 ◽  
Author(s):  
Thomas Kreuz ◽  
Mario Mulansky ◽  
Nebojsa Bozanic

Techniques for recording large-scale neuronal spiking activity are developing very fast. This leads to an increasing demand for algorithms capable of analyzing large amounts of experimental spike train data. One of the most crucial and demanding tasks is the identification of similarity patterns with a very high temporal resolution and across different spatial scales. To address this task, in recent years three time-resolved measures of spike train synchrony have been proposed, the ISI-distance, the SPIKE-distance, and event synchronization. The Matlab source codes for calculating and visualizing these measures have been made publicly available. However, due to the many different possible representations of the results the use of these codes is rather complicated and their application requires some basic knowledge of Matlab. Thus it became desirable to provide a more user-friendly and interactive interface. Here we address this need and present SPIKY, a graphical user interface that facilitates the application of time-resolved measures of spike train synchrony to both simulated and real data. SPIKY includes implementations of the ISI-distance, the SPIKE-distance, and the SPIKE-synchronization (an improved and simplified extension of event synchronization) that have been optimized with respect to computation speed and memory demand. It also comprises a spike train generator and an event detector that makes it capable of analyzing continuous data. Finally, the SPIKY package includes additional complementary programs aimed at the analysis of large numbers of datasets and the estimation of significance levels.


Sign in / Sign up

Export Citation Format

Share Document