Shear Strength of Clays and Clayey Soils: the Influence of Pore Fluid Composition

Author(s):  
Caterina Maio
2021 ◽  
Vol 13 (21) ◽  
pp. 11741
Author(s):  
Jongmuk Won ◽  
Junghee Park ◽  
Junki Kim ◽  
Junbong Jang

The current classification of clayey soils does not entail information of pore fluid chemistry and particle size less than 75 µm. However, the pore fluid chemistry and particle size (at given mineralogy) are critical in the plasticity of clayey soils because of their impact on negative charge density. Therefore, this study extensively discusses the description of clay with respect to mineralogy, particle sizes, and pore fluid chemistry based on liquid and plastic limits of kaolinite, illite, and bentonite, and estimates undrained shear strength from the observed liquid limits. The liquid limits and undrained shear strength estimated from the observed liquid limits as a function of mineralogy (clay type), particle size, and ionic concentration reveal the need of incorporating pore fluid chemistry and particle size into the fines classification system. Furthermore, multiple linear regression models developed in this study demonstrate the importance of particle size and ionic concentration in predicting the liquid limit of clayey soils. This study also discusses the need for a comprehensive understanding of fines classification for proper interpretation of natural phenomena and engineering applications for fine-grained sediments.


1993 ◽  
Vol 30 (6) ◽  
pp. 920-934 ◽  
Author(s):  
S.L. Barbour ◽  
N. Yang

Natural Ca-montmorillonite clay soils or engineered clay barriers in western Canada are often used to contain brine generated from the surface disposal of potash tailings or from drilling activities associated with the oil and gas industry. The performance of these barriers has ranged from excellent to poor. The influence of salt brines on the geotechnical properties of these soils has been recognized as a potentially important factor for some time. It has been well documented in the literature that the behavior of clayey soils is strongly influenced by physicochemical interactions between clay particles and pore-fluid chemistry; consequently, the properties of these soils are sensitive to changes in the electrolyte concentration of the pore fluid. An increase in the concentration of the pore fluid to the levels of a concentrated brine can cause significant changes in the geotechnical properties of the soil. In this paper, the impact of brine contamination on the geotechnical properties of two Ca-montmorillonitic clayey soils of glacial origin from western Canada is reviewed. The influence of clay–brine interactions on the index properties (liquid limit, plastic limit, plastic index, mineralogy, density, grain size, and compaction characteristics), mechanical properties (volume change and shear strength), and hydraulic properties (hydraulic conductivity) is described. A quantitative explanation for the changes that occur in the hydraulic and mechanical properties of these soils as a result of brine permeation is also provided. This explanation relates the changes in pore-fluid chemistry to changes in an effective physicochemical stress state. This approach may be used to predict the changes in hydraulic conductivity, volume, or shear strength of a clayey soil as a result of brine contamination. Key words : clay–brine interactions, diffuse double layer, hydraulic conductivity, soil structure, physicochemical.


1962 ◽  
Vol 99 (6) ◽  
pp. 558-569 ◽  
Author(s):  
Peter J. Wyllie

AbstractBowen's petrogenetic grid is a PT projection containing univariant curves for decarbonation, dehydration, and solid-solid reactions, with vapour pressure (Pf) equal to total pressure (Ps). Analysis of experimental data in the system MgO–CO2–H2O leads to an expansion of this grid. Three of the important variables in metamorphism when Pf = Ps are P, T, and variation of the pore fluid composition between H2O and CO2. These can be illustrated in a three-dimensional petrogenetic model; one face is a PT plane for reactions occurring with pure H2O, and the opposite face is a similar plane for reactions with pure CO2; these are separated by an axis for pore fluid composition varying between H2O and CO2. Superposition of the PT faces of the model provides the petrogenetic grid. The reactions within the model are represented by divariant surfaces, which may meet along univariant lines. For dissociation reactions, the surfaces curve towards lower temperatures as the proportion of non-reacting volatile increases, and solid-solid reaction surfaces are parallel to the vapour composition axis and perpendicular to the PT axes. The relative temperatures of reactions and the lines of intersections of the surfaces can be illustrated in isobaric sections. Isobaric sections are used to illustrate reactions proceeding at constant pressure with (1) pore fluid composition remaining constant during the reaction, with temperature increasing (2) pore fluid composition changing during the reaction, with temperature increasing, and (3) pore fluid changing composition at constant temperature. The petrogenetic model provides a convenient framework for a wide range of experimental data.


2016 ◽  
Vol 158 ◽  
pp. 69-74 ◽  
Author(s):  
Dario M. Pontolillo ◽  
Jacopo De Rosa ◽  
Gianvito Scaringi ◽  
Caterina Di Maio
Keyword(s):  

Author(s):  
Khelifa Harichane ◽  
Mohamed Ghrici ◽  
Said Kenai

Cohesive soils with a high plasticity index present difficulties in construction operations because they usually contain expansive clay minerals. However, the engineering properties of soils can be improved by different techniques. The aim of this paper is to study the effect of using lime, natural pozzolana or a combination of both lime and natural pozzolana on plasticity, compaction and shear strength of two clayey soils classified as CH and CL according to the unified soil classification system (USCS). The obtained results indicated that for CH class clay soil, the plasticity index decreased significantly for samples stabilized with lime. On the other hand, for the soil classified as CL class clay, a high decrease in the plasticity index value was observed for samples stabilized with natural pozzolana compared to those stabilized with lime. Also, both the cohesion and internal friction angle in lime added samples were demonstrated to increase with time. The combination of lime and natural pozzolana exhibits a significant effect on the enhancement of both the cohesion and  internal friction angle at later stages. The lime-natural pozzolana combination appears to produce higher shear strength parameters than lime or natural pozzolana used alone.


Sign in / Sign up

Export Citation Format

Share Document