Approximated Interval Estimation in the Staggered Nested Designs for Precision Experiments

Author(s):  
Motohiro Yamasaki ◽  
Michiaki Okuda ◽  
Yoshikazu Ojima ◽  
Seiichi Yasui ◽  
Tomomichi Suzuki
2013 ◽  
Vol 221 (3) ◽  
pp. 145-159 ◽  
Author(s):  
Gerard J. P. van Breukelen

This paper introduces optimal design of randomized experiments where individuals are nested within organizations, such as schools, health centers, or companies. The focus is on nested designs with two levels (organization, individual) and two treatment conditions (treated, control), with treatment assignment to organizations, or to individuals within organizations. For each type of assignment, a multilevel model is first presented for the analysis of a quantitative dependent variable or outcome. Simple equations are then given for the optimal sample size per level (number of organizations, number of individuals) as a function of the sampling cost and outcome variance at each level, with realistic examples. Next, it is explained how the equations can be applied if the dependent variable is dichotomous, or if there are covariates in the model, or if the effects of two treatment factors are studied in a factorial nested design, or if the dependent variable is repeatedly measured. Designs with three levels of nesting and the optimal number of repeated measures are briefly discussed, and the paper ends with a short discussion of robust design.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huan Li ◽  
Siruo Zhang ◽  
Ruina Liu ◽  
Lu Yuan ◽  
Di Wu ◽  
...  

AbstractOnce the body dies, the indigenous microbes of the host begin to break down the body from the inside and play a key role thereafter. This study aimed to investigate the probable shift in the composition of the rectal microbiota at different time intervals up to 15 days after death and to explore bacterial taxa important for estimating the time since death. At the phylum level, Proteobacteria and Firmicutes showed major shifts when checked at 11 different intervals and emerged at most of the postmortem intervals. At the species level, Enterococcus faecalis and Proteus mirabilis showed a downward and upward trend, respectively, after day 5 postmortem. The phylum-, family-, genus-, and species-taxon richness decreased initially and then increased considerably. The turning point occurred on day 9, when the genus, rather than the phylum, family, or species, provided the most information for estimating the time since death. We constructed a prediction model using genus-level data from high-throughput sequencing, and seven bacterial taxa, namely, Enterococcus, Proteus, Lactobacillus, unidentified Clostridiales, Vagococcus, unidentified Corynebacteriaceae, and unidentified Enterobacteriaceae, were included in this model. The abovementioned bacteria showed potential for estimating the shortest time since death.


2021 ◽  
Vol 9 (1) ◽  
pp. 172-189
Author(s):  
David Benkeser ◽  
Jialu Ran

Abstract Understanding the pathways whereby an intervention has an effect on an outcome is a common scientific goal. A rich body of literature provides various decompositions of the total intervention effect into pathway-specific effects. Interventional direct and indirect effects provide one such decomposition. Existing estimators of these effects are based on parametric models with confidence interval estimation facilitated via the nonparametric bootstrap. We provide theory that allows for more flexible, possibly machine learning-based, estimation techniques to be considered. In particular, we establish weak convergence results that facilitate the construction of closed-form confidence intervals and hypothesis tests and prove multiple robustness properties of the proposed estimators. Simulations show that inference based on large-sample theory has adequate small-sample performance. Our work thus provides a means of leveraging modern statistical learning techniques in estimation of interventional mediation effects.


Author(s):  
Zhenhua Wang ◽  
Hui Yin ◽  
Thach Ngoc Dinh ◽  
Tarek Raïssi

Sign in / Sign up

Export Citation Format

Share Document