scholarly journals Potential use of molecular and structural characterization of the gut bacterial community for postmortem interval estimation in Sprague Dawley rats

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huan Li ◽  
Siruo Zhang ◽  
Ruina Liu ◽  
Lu Yuan ◽  
Di Wu ◽  
...  

AbstractOnce the body dies, the indigenous microbes of the host begin to break down the body from the inside and play a key role thereafter. This study aimed to investigate the probable shift in the composition of the rectal microbiota at different time intervals up to 15 days after death and to explore bacterial taxa important for estimating the time since death. At the phylum level, Proteobacteria and Firmicutes showed major shifts when checked at 11 different intervals and emerged at most of the postmortem intervals. At the species level, Enterococcus faecalis and Proteus mirabilis showed a downward and upward trend, respectively, after day 5 postmortem. The phylum-, family-, genus-, and species-taxon richness decreased initially and then increased considerably. The turning point occurred on day 9, when the genus, rather than the phylum, family, or species, provided the most information for estimating the time since death. We constructed a prediction model using genus-level data from high-throughput sequencing, and seven bacterial taxa, namely, Enterococcus, Proteus, Lactobacillus, unidentified Clostridiales, Vagococcus, unidentified Corynebacteriaceae, and unidentified Enterobacteriaceae, were included in this model. The abovementioned bacteria showed potential for estimating the shortest time since death.

2020 ◽  
Author(s):  
Huan Li ◽  
Siruo Zhang ◽  
Ruina Liu ◽  
Lu Yuan ◽  
Di Wu ◽  
...  

Abstract Once the body dies, the inherent microbes of the host begin to break down from the inside and play a key role thereafter. It is hypothesized that after the death certain rectal microbes would change during the decomposition course in the body. This study aimed to investigate the probable shift in the composition of the rectal flora at different time intervals up to 15 days after death and to explore bacterial taxa important for estimating the time of death. At the phylum level, Proteobacteria and Firmicutes showed major shifts, when checked at 11 different intervals, and emerged at most of the postmortem intervals. At the species level, Enterococcus faecalis and Proteus mirabilis existed at most postmortem intervals; the former showed a downward trend after day 5 postmortem, while the latter showed an upward trend. There were obvious differences in bacterial community structure and richness at the phylum, genus, and species levels during the decomposition of the corpse of rats. The phylum, genus, and species taxa richness decreased initially and then increased significantly. The turning point came on day 9 when genus, rather than phylum or species, contained the most information for estimating the time of death. We constructed a prediction model using genus taxon data from high-throughput sequencing, which explained 87.2% of the time since the first sampling within 1 h. Seven bacteria, namely Enterococcus, Proteus, Lactobacillus, unidentified Clostridiales, Vagococcus, unidentified Corynebacteriaceae, and unidentified Enterobacteriaceae, were included in this model. The above-mentioned bacteria showed a promising future for estimating the shortest time of death and results of current study were agreeing with the proposed hypothesis.


2021 ◽  
Vol 32 (6) ◽  
pp. 524-532
Author(s):  
Angela M. Thomas ◽  
Kaley J. Cargile ◽  
Jannelle A. Lunn ◽  
Lisa E. Baker

2015 ◽  
Vol 70 (5-6) ◽  
pp. 151-157 ◽  
Author(s):  
Ye Pan ◽  
Peng Lü ◽  
Lijing Yin ◽  
Keping Chen ◽  
Yuanqing He

Abstract Two-dimensional gel electrophoresis (2-DE) was used to detect fluoride-induced alterations in the proteome of the rat hippocampus. Male Sprague-Dawley rats (n=30) were subjected to treatments three weeks after weaning. Animals of the first group were injected intraperitoneally (i.p.) with aqueous NaF (20 mg/kg/body weight/day), the second group, injected with physiological saline, served as the control. After 30 days, the body weight of the fluoride-treated rats was lower than that of the control, and F– levels in serum were higher than in the control. The hippocampus was subjected to proteomic analysis, and the fluoride-treated group was found to contain 19 up-regulated and eight down-regulated proteins. The proteins, identified by mass-spectroscopic analysis of their fragments obtained after digestion, were found to be involved in amino acid biosynthesis, the insulin signaling pathway and various other crucial functions. Our results also provide useful information on the mechanism of the reduction of the learning ability and memory induced by F.


1987 ◽  
Vol 6 (6) ◽  
pp. 451-458 ◽  
Author(s):  
W. Rau ◽  
F. Planas-Bohne ◽  
D.M. Taylor

1 Male Sprague-Dawley rats were injected with 109CdCl2 (3 μmol Cd/kg) and killed between 1 h and 200 d afterwards. Metal concentration in the critical organs, i.e. liver and kidneys decreased very slowly. Within the cells Cd is found mainly in the cytosol and — at very early times — in the nuclei. Within the cytosol of the liver most of the metal is initially bound to proteins with high molecular weight but as early as 3 h after incorporation more than 90% is bound to metallothionein which is always the main binding site in the kidneys. 2 Of the chelating agents tested only BAL and Puchel were able to reduce the body burden significantly. Both are lipophilic substances. Puchel cannot reduce the kidney Cd burden but removes Cd from the liver only while BAL is effective in both organs. Both chelating agents exert their effects at doses which are too near to the LDso to be considered as safe enough for human use.


2021 ◽  
Vol 15 (11) ◽  
pp. 2948-2950
Author(s):  
Sumaira Abbasi ◽  
Mushtaq Ahmad ◽  
Kaukab Anjum ◽  
Amaidah Mir ◽  
Ayesha Irfan ◽  
...  

Lead is a highly toxic agent and a potent risk factor for various diseases as its quantity in an environment is increasing day by day. Aim: To observe and analyze the lead nitrate induced histomorphological changes in the liver of Sprague Dawley rats. Study Design: Experimental Study. Methodology: Animals of group A (control) were fed on normal diet but the animals of group B were given 50mg/kg of lead nitrate dissolved in 10ml of distilled water through oral gavage for 14 days daily. SPSS version 22 was used for data analysis. All the quantitative data was expressed as means ± SD. One Way ANOVA followed by Post Hoc Tukey test was applied. Results: Degenerative effects were noted. The number of Inflammatory and Kupfffer cells is increased with decreased in the body weight. Steatosis and central vein congestion were also present. Conclusion: It was concluded that degenerative effects histologically may be due to oxidative stress produced by formation of free radicals and denaturation of proteins by lead nitrate. Keywords: Lead, Liver, Central Vein Congestion, Oxidative Stress and Free Radicals.


2019 ◽  
Author(s):  
Huan Li ◽  
Lu Yuan ◽  
Ruina Liu ◽  
Siruo Zhang ◽  
E Yang ◽  
...  

Abstract Background The human rectum flora consists of a huge variety of bacteria and the association between individuals and their rectum bacterial community begins presently after birth and continues the whole lifetime. Once the body dies, the inherent microbes begin to break down from the inside and play a key role thereafter. Results The aim of this study was to investigate the probable shift of the rectum flora at different time intervals up to 15 days after death and to characterize the contribution for of this shift to estimate the time of death. The rectum of rats was wiped with a sterile cotton swab and the samples were proceeded for DNA extraction, PCR amplification of the 16S rRNA gene with the V3+V4 variable regions, and high throughput sequencing carried out on IonS5TMXL platform. The results were analyzed for intra-group and inter-group diversity, similarity and difference at different time points. At phylum level, Proteobacteria and Firmicutes showed major shifts, checked at 11 different intervals and emerged in the most of postmortem intervals. At the genus level, Enterococcus appeared in all groups except alive samples, Lactobacillus and Proteus appeared in most time points, and the latter showed an increasing trend after 3 days postmortem samples. At the species level, Enterococcus_faecalis and Proteus_mirabilis existed in most postmortem intervals, and the former had a downward trend after day 5 postmortem, while the latter had an upward trend. Corynebacterium_amycolatum , Entero_isolate_group_2 , Bacteroides_uniformis , Enterococcus_faecalis , Streptococcus_gallolyticus_subsp_macedonics , Clostridium_sporogenes were more abundant in 0-hour, day 1, 3, 5, 7, 13 postmortem intervals, respectively, while Proteus_mirabilis and Vagococcus_lutrae were abundant in day 15 postmortem. In addition, functional capacity analysis of Membrane_Transport, Amino_Acid_Metabolism, Nucleotide_Metabolism and Energy_Metabolism showed significant differences between alive and almost all other time points after death ( P <0.05). Conclusions All in all, bacteria at different levels (phylum, genera, species) showed different characteristic during the process of decomposition and possessed entirely different relative abundance and the structure of bacterial community in each time point shifted obviously, which suggested that the specific bacteria might imply the specific postmortem interval during decomposition.


1982 ◽  
Vol 52 (2) ◽  
pp. 410-415 ◽  
Author(s):  
F. Furuyama

The survival times of unanesthetized rats in 42.5 degree C. 48% rh were studied in 12 different strains. In males, Sprague-Dawley rats (P less than 0.01) and Fisher 344/MK (P less than 0.05) showed significantly higher heat tolerance than the other 9 strains. Among Sprague-Dawley rats, females tolerated heat longer than males (P less than 0.05). There was no difference in lethal body temperature according to strains and exposure temperatures (38.5–48.5 degree C). Maximum survivable body temperature was 43.1 degree C in males and 43.3 degree C in females. The body weight loss in heat was greater in Sprague-Dawley, Fisher 344/MK, and JCL:Wistar strains. The degree of saliva spreading during the equilibrium period just below the maximum survivable body temperature correlated significantly with heat tolerance and was found to be the index of strain difference in heat tolerance. These findings demonstrated that the thermoregulatory system of rats is controlled genetically, though survival times of individuals in different strains sometimes overlap.


Sign in / Sign up

Export Citation Format

Share Document