Cascade of Building Codes: Analysis of Scenarios for Energy Efficiency

Author(s):  
Stefan N. Grösser
2014 ◽  
Vol 18 (2) ◽  
pp. 615-630 ◽  
Author(s):  
Mirjana Laban ◽  
Radomir Folic

The main objective of this paper is to evaluate the thermal properties of existing residential buildings built in industrial manner in Novi Sad from 1960 to 1990 based on building typology. Each of three analyzed building type has its characteristic fa?ade, with thermal performances divided into periods according to the development of domestic thermal protection building codes. The necessary layer of subsequent insulation is determined by calculations in order to comply with European standards, also applied in Serbia from 2012. The proposed method of periodization simplifies the process of thermal performance assessment and it was checked through the case studies. Evaluation of energy consumption rationalization has been done through comparative analysis of energy losses. Based on the most common energy rehabilitation measures applied in Serbia, it was estimated that it was possible to reduce the energy losses in heating up to 60%.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8088
Author(s):  
Mohamed H. Elnabawi

In arid climates, almost half of the urban peak load of energy demand is used to supply cooling and air-conditioning in the summertime. The pressure placed on energy resources to satisfy inhabitants’ indoor comfort requirements is mounting due to accelerated urbanisation rates in developing countries and has led countries such as those in the GCC (Gulf Cooperation Council) to establish sustainable building codes to enhance their environmental performance. Using the extensive parametric energy simulations provided by DesignBuilder, this study addresses the potential of applying different GCC energy efficiency measures to reduce annual energy consumption and carbon emissions in a typical residential dwelling in the Kingdom of Bahrain. To do so, first, a base case validation simulation model was generated, followed by four design scenarios addressing the minimum requirements for Bahrain’s Energy Conservation Code, Abu Dhabi’s ESTIDAMA 1, Saudi Arabia’s code, and Kuwait’s building code. Then, a feasibility study was conducted using the simple payback period (SPP) and lifecycle cost (LCC) analysis. Overall energy and carbon emission (CO2) reduction showed the potential for building sustainable codes to improve building environmental performance throughout the year. In terms of energy performance and CO2 reduction, Abu Dhabi’s ESTIDAMA 1 code recorded the best energy savings at a 24.4% and a 26.3% reduction in carbon emissions, followed by the Saudi code with a 14.6% annual energy savings and 12.3% less carbon emissions. Regarding the economic analysis, although the SPP indicates the Bahraini code offered payback in just under two years for subsidised energy and half a year for unsubsidised, the LCC analysis suggests that applying Abu Dhabi’s ESTIDAMA 1 code was the most feasible, followed by the Saudi building code. Consequently, the study suggests a comprehensive evaluation of the relationship between the sustainable building codes and their economic feasibility in order to enhance and promote the wide application in the GCC based on the code’s capabilities and their benefits for residential households and the overall economy.


2020 ◽  
pp. 1-45
Author(s):  
Kevin Novan ◽  
Aaron Smith ◽  
Tianxia Zhou

In 1978, California adopted building codes designed to reduce the energy used for temperature control. Using a rich dataset of hourly electricity consumption for 158, 112 houses in Sacramento, we estimate that the average house built just after 1978 uses 8% to 13% less electricity for cooling than a similar house built just before 1978. Comparing the estimated savings to the policy's projected cost, our results suggest the policy passes a cost-benefit test. In settings where market failures prevent energy costs from being completely passed through to home prices, building codes can serve as a costeffective tool for improving energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document