Beta-Cyclomaltodextrin Glucanotransferase of a Species of Alkaliphilic Bacillus for the Production of Beta-Cyclodextrin

2011 ◽  
pp. 213-227
Author(s):  
Nobuyuki Nakamura
Extremophiles ◽  
2001 ◽  
Vol 5 (5) ◽  
pp. 351-354 ◽  
Author(s):  
Shaobin Hou ◽  
Claude Belisle ◽  
Summer Lam ◽  
Mikhail Piatibratov ◽  
Victor Sivozhelezov ◽  
...  

2021 ◽  
Vol 11 (14) ◽  
pp. 6597
Author(s):  
Aldo Arrais ◽  
Marta Manzoni ◽  
Alessia Cattaneo ◽  
Valentina Gianotti ◽  
Nadia Massa ◽  
...  

Essential oils are widely recognized as natural alternatives to pharmaceutical antibacterial and antifungal agents. With respect to standard pharmaceutics, the advantages of essential oils are their (i) low production costs, (ii) lack of chemical and biochemical drawbacks that are intrinsic to the synthetic production process and (iii) good tolerance by humans. On the other hand, the liquid nature of essential oils poses concerns about their actual application in different therapeutic issues regarding their persistence and the ability to control or prolong drug release. In this study, two essential oils from oregano and winter savory showing antibacterial and antifungal features were complexed in a solid state with beta-cyclodextrin. Host–guest inclusion complexes were characterized using FT-IR spectroscopy, ESI-MS and GC-MS techniques. Manyfold terpenic and non-terpenic components of the oils could be observed and unambiguously identified as being included inside the carbohydrate hosts. Many of them provided a specific biocidal action. Indeed, essential oil host–guest inclusion products were tested against two Candida species and an S. aureus reference strain, showing that the oils effectively maintained their liquid performances. Solid-state tablets of the essential oil inclusion complexes embedded in polyvinylpyrrolidone could be obtained. These results pave the way for the solid-state application of essential oils in antibacterial and antifungal pharmaceutical treatments.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Qui Quach ◽  
Erik Biehler ◽  
Ahmed Elzamzami ◽  
Clay Huff ◽  
Julia M. Long ◽  
...  

The current climate crisis warrants investigation into alternative fuel sources. The hydrolysis reaction of an aqueous hydride precursor, and the subsequent production of hydrogen gas, prove to be a viable option. A network of beta-cyclodextrin capped gold nanoparticles (BCD-AuNP) was synthesized and subsequently characterized by Powder X-Ray Diffraction (P-XRD), Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), and Ultraviolet-Visible Spectroscopy (UV-VIS) to confirm the presence of gold nanoparticles as well as their size of approximately 8 nm. The catalytic activity of the nanoparticles was tested in the hydrolysis reaction of sodium borohydride. The gold catalyst performed best at 303 K producing 1.377 mL min−1 mLcat−1 of hydrogen. The activation energy of the catalyst was calculated to be 54.7 kJ/mol. The catalyst resisted degradation in reusability trials, continuing to produce hydrogen gas in up to five trials.


Sign in / Sign up

Export Citation Format

Share Document