Metal–Molecular Assembly for Functional Materials

2021 ◽  
Vol 7 (32) ◽  
pp. eabh3505
Author(s):  
Ling-Ling Ma ◽  
Chao Liu ◽  
Sai-Bo Wu ◽  
Peng Chen ◽  
Quan-Ming Chen ◽  
...  

Rotation-translation conversion is a popular way to achieve power transmission in machinery, but it is rarely selected by nature. One unique case is that of bacteria swimming, which is based on the collective reorganization and rotation of flagella. Here, we mimic such motion using the light-driven evolution of a self-organized periodic arch pattern. The range and direction of translation are altered by separately varying the alignment period and the stimulating photon energy. Programmable self-propelling actuators are realized via a specific molecular assembly within a photoresponsive cholesteric medium. Through rationally presetting alignments, parallel transports of microspheres in customized trajectories are demonstrated, including convergence, divergence, gathering, and orbital revolution. This work extends the understanding of the rotation-translation conversion performed in an exquisitely self-organized system and may inspire future designs for functional materials and intelligent robotics.


2019 ◽  
Vol 4 (1) ◽  
pp. 49-64 ◽  
Author(s):  
Katsuhiko Ariga ◽  
Xiaofang Jia ◽  
Lok Kumar Shrestha

Nanoarchitectonics would be a breakthrough paradigm for preparation of functional materials with soft material components from nanoscale units.


2020 ◽  
Vol 8 (4) ◽  
pp. 1421-1426 ◽  
Author(s):  
Baozhong Lü ◽  
Pengyu Li ◽  
Pengfei Li ◽  
Yantu Zhang ◽  
Klaus Müllen ◽  
...  

Molecular assembly has emerged as a key protocol for designing functional materials, although building in task-specific applications remains challenging.


BMC Materials ◽  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Wei Chen ◽  
Xiaohua Tian ◽  
Wenbo He ◽  
Jianwei Li ◽  
Yonghai Feng ◽  
...  

AbstractThe specific interactions responsible for molecular recognition play a crucial role in the fundamental functions of biological systems. Mimicking these interactions remains one of the overriding challenges for advances in both fundamental research in biochemistry and applications in material science. However, current molecular recognition systems based on host–guest supramolecular chemistry rely on familiar platforms (e.g., cyclodextrins, crown ethers, cucurbiturils, calixarenes, etc.) for orienting functionality. These platforms limit the opportunity for diversification of function, especially considering the vast demands in modern material science. Rational design of novel receptor-like systems for both biological and chemical recognition is important for the development of diverse functional materials. In this review, we focus on recent progress in chemically designed molecular recognition and their applications in material science. After a brief introduction to representative strategies, we describe selected advances in these emerging fields. The developed functional materials with dynamic properties including molecular assembly, enzyme-like and bio-recognition abilities are highlighted. We have also selected materials with dynamic properties in contract to traditional supramolecular host–guest systems. Finally, the current limitations and some future trends of these systems are discussed.


COSMOS ◽  
2011 ◽  
Vol 07 (01) ◽  
pp. 31-42
Author(s):  
S. PUNIREDDY ◽  
S. JAYARAMAN ◽  
R. K. GUPTA ◽  
S. H. YEONG ◽  
F. ZHANG ◽  
...  

A wide range of new materials for many applications can be formed by controlling the composition and order of constituents at the molecular level. For systems thus engineered, ensuring chemical, thermal and mechanical robustness is a major challenge. Consequently, polyimides and other imide-containing materials are attractive as matrices for functional materials. We investigate the construction of functional nanostructures in organic/polymeric matrices with clearly demonstrated chemical, thermal and mechanical stability. Surface functionalization, layer-by-layer (LBL) assembly in various media (including supercritical), incorporation of functional moieties, molecular orientation, and interfacial reactions are areas of interest. We demonstrate the robustness of ultrathin film structures containing polyimides and oligoimides formed by LBL molecular assembly with inter-layer covalent links. Covalent bonding between the layers provides strength, while utilizing a supercritical medium for the processing, results in the deployment of a solvent-free environment and avoids problems related to residual solvent, thereby improving film quality when compared to conventional films.


2007 ◽  
Vol 121-123 ◽  
pp. 731-734
Author(s):  
Li Na Xu ◽  
K.C. Zhou ◽  
Sheng Li Xie ◽  
L. Huang ◽  
Ning Gu

Molecular assembly technology has attracted much research attention due to its flexible applications in modulation of surface property and construction of nanostructures and devices. Herein, a well-defined surface metallization technique has been achieved via anchoring electroless catalysts onto substrates’ surfaces with the pendant active groups of self-assembled monolayers. This method affords a means to control surface functionality at molecular level and has advantages over the conventional Sn-Pd methods, such as convenient operation, good reproducibility, increased longevity of the activated initiator and improved adhesion of metal deposition to substrates. Therefore, it has great significance in the fields of developing bottom-up combined micro/nano-fabrication technique. This metallization process has been successfully performed on hollow ceramic particles to fabricate light-weighted core-shell functional materials.


2020 ◽  
Vol 11 ◽  
pp. 124-140 ◽  
Author(s):  
Debasis Ghosh ◽  
Lakshmi P Datta ◽  
Thimmaiah Govindaraju

DNA is the key biomolecule central to almost all processes in living organisms. The eccentric idea of utilizing DNA as a material building block in molecular and structural engineering led to the creation of numerous molecular-assembly systems and materials at the nanoscale. The molecular structure of DNA is believed to have evolved over billions of years, with structure and stability optimizations that allow life forms to sustain through the storage and transmission of genetic information with fidelity. The nanoscale structural characteristics of DNA (2 nm thickness and ca. 40–50 nm persistence length) have inspired the creation of numerous functional patterns and architectures through noncovalent conventional and unconventional base pairings as well as through mutual templating-interactions with small organic molecules and metal ions. The recent advancements in structural DNA nanotechnology allowed researchers to design new DNA-based functional materials with chemical and biological properties distinct from their parent components. The modulation of structural and functional properties of hybrid DNA ensembles of small functional molecules (SFMs) and short oligonucleotides by adapting the principles of molecular architectonics enabled the creation of novel DNA nanoarchitectures with potential applications, which has been termed as templated DNA nanotechnology or functional DNA nanoarchitectonics. This review highlights the molecular architectonics-guided design principles and applications of the derived DNA nanoarchitectures. The advantages and ability of functional DNA nanoarchitectonics to overcome the trivial drawbacks of classical DNA nanotechnology to fulfill realistic and practical applications are highlighted, and an outlook on future developments is presented.


Author(s):  
Yoichi Ishida ◽  
Hideki Ichinose ◽  
Yutaka Takahashi ◽  
Jin-yeh Wang

Layered materials draw attention in recent years in response to the world-wide drive to discover new functional materials. High-Tc superconducting oxide is one example. Internal interfaces in such layered materials differ significantly from those of cubic metals. They are often parallel to the layer of the neighboring crystals in sintered samples(layer plane boundary), while periodically ordered interfaces with the two neighboring crystals in mirror symmetry to each other are relatively rare. Consequently, the atomistic features of the interface differ significantly from those of cubic metals. In this paper grain boundaries in sintered high-Tc superconducting oxides, joined interfaces between engineering ceramics with metals, and polytype interfaces in vapor-deposited bicrystal are examined to collect atomic information of the interfaces in layered materials. The analysis proved that they are not neccessarily more complicated than that of simple grain boundaries in cubic metals. The interfaces are majorly layer plane type which is parallel to the compound layer. Secondly, chemical information is often available, which helps the interpretation of the interface atomic structure.


2020 ◽  
Vol 11 (48) ◽  
pp. 7603-7624
Author(s):  
Ismail Altinbasak ◽  
Mehmet Arslan ◽  
Rana Sanyal ◽  
Amitav Sanyal

This review provides an overview of synthetic approaches utilized to incorporate the thiol-reactive pyridyl-disulfide motif into various polymeric materials, and briefly highlights its utilization to obtain functional materials.


2004 ◽  
Vol 71 ◽  
pp. 1-14
Author(s):  
David Leys ◽  
Jaswir Basran ◽  
François Talfournier ◽  
Kamaldeep K. Chohan ◽  
Andrew W. Munro ◽  
...  

TMADH (trimethylamine dehydrogenase) is a complex iron-sulphur flavoprotein that forms a soluble electron-transfer complex with ETF (electron-transferring flavoprotein). The mechanism of electron transfer between TMADH and ETF has been studied using stopped-flow kinetic and mutagenesis methods, and more recently by X-ray crystallography. Potentiometric methods have also been used to identify key residues involved in the stabilization of the flavin radical semiquinone species in ETF. These studies have demonstrated a key role for 'conformational sampling' in the electron-transfer complex, facilitated by two-site contact of ETF with TMADH. Exploration of three-dimensional space in the complex allows the FAD of ETF to find conformations compatible with enhanced electronic coupling with the 4Fe-4S centre of TMADH. This mechanism of electron transfer provides for a more robust and accessible design principle for interprotein electron transfer compared with simpler models that invoke the collision of redox partners followed by electron transfer. The structure of the TMADH-ETF complex confirms the role of key residues in electron transfer and molecular assembly, originally suggested from detailed kinetic studies in wild-type and mutant complexes, and from molecular modelling.


Sign in / Sign up

Export Citation Format

Share Document