Force JND for Right Index Finger Using Contra Lateral Force Matching Paradigm

Author(s):  
M. S. Raghu Prasad ◽  
Sunny Purswani ◽  
M. Manivannan
2009 ◽  
Vol 102 (6) ◽  
pp. 3519-3529 ◽  
Author(s):  
Allan M. Smith ◽  
C. Elaine Chapman ◽  
François Donati ◽  
Pascal Fortier-Poisson ◽  
Vincent Hayward

This study reexamined the perceptual equivalence of active and passive touch using a computer-controlled force-feedback device. Nine subjects explored a 6 × 10-cm workspace, with the index finger resting on a mobile flat plate, and experienced simulated Gaussian ridges and troughs (width, 15 mm; amplitude, 0.5 to 4.5 mm). The device simulated shapes by modulating either lateral resistance with no vertical movement or by vertical movement with no lateral forces, as a function of the digit position in the horizontal workspace. The force profiles and displacements recorded during active touch were played back to the stationary finger in the passive condition, ensuring that stimulation conditions were identical. For the passive condition, shapes simulated by vertical displacements of the finger had lower categorization thresholds and higher magnitude estimates compared with those of active touch. In contrast, the results with the lateral force fields showed that with passive touch, subjects recognized that a stimulus was present but were unable to correctly categorize its shape as convex or concave. This result suggests that feedback from the motor command can play an important role in processing sensory inputs during tactile exploration. Finally, subjects were administered a ring-block anesthesia of the digital nerves of the index finger and subsequently retested. Removing skin sensation significantly increased the categorization threshold for the perception of shapes generated by lateral force fields, but not for those generated by displacement fields.


1998 ◽  
Vol 79 (3) ◽  
pp. 1246-1254 ◽  
Author(s):  
John G. Semmler ◽  
Michael A. Nordstrom

Semmler, John G. and Michael A. Nordstrom. Hemispheric differences in motor cortex excitability during a simple index finger abduction task in humans. J. Neurophysiol. 79: 1246–1254, 1998.Transcranial magnetic (TMS) and electrical (TES) stimulation was used to assess the contribution of the corticospinal pathway to activation of the first dorsal interosseous muscle (FDI) in each hand of 16 right-handed subjects. TMS was applied at relaxed threshold intensity while the subject performed isometric index finger abduction at seven force levels [0.5 N to 50% maximal voluntary contraction (MVC)]. In a separate session, TES of equivalent intensity was applied to each hemisphere in 5 of these subjects while they performed the same force-matching protocol. In the resting state, mean threshold intensity for a muscle-evoked potential (MEP) in FDI using TMS was similar for the hemispheres controlling the dominant and nondominant hands. The size of the threshold MEPs in resting FDI after TMS and TES were also similar in each hand. With TMS, contraction-induced facilitation of the MEP in FDI was significantly larger when the nondominant hand was used for index finger abduction. In the pooled data, the nondominant/dominant ratio of MEP areas (normalized to the maximum M wave) ranged from 1.7 in the weakest contraction (0.5 N) to 1.1 in the strongest (50% MVC). Eight subjects had significant differences between hands in favour of the nondominant hand, whereas in two subjects contraction-induced facilitation of MEPs was larger in the dominant hand. In five subjects for whom detailed motor unit data were available from a previous study, lateral differences in MEP facilitation were positively correlated with differences in FDI motor unit synchronization between hands. With TES, contraction-induced facilitation of the MEP was similar in each hand, suggesting that spinal excitability was equivalent on both sides. For the group of five subjects tested with both stimulation techniques, contraction-induced facilitation of the MEP was significantly larger after TMS than that obtained with TES when the contraction was performed with the nondominant hand, but not when the dominant hand was used to perform the task. We conclude that the extent of corticospinal neuron involvement in the command for simple index finger abduction in right-handed subjects is generally greater when the nondominant hand is used, compared with the same task performed with the dominant hand.


2016 ◽  
Vol 120 (12) ◽  
pp. 1410-1417 ◽  
Author(s):  
Awad M. Almuklass ◽  
Ryan C. Price ◽  
Jeffrey R. Gould ◽  
Roger M. Enoka

The purpose of the study was to evaluate the capacity of an expanded set of force steadiness tasks to explain the variance in the time it takes young men and women to complete the grooved pegboard test. In a single experimental session, 30 participants (mean ± SD) (24.2 ± 4.0 yr; 15 women) performed the grooved pegboard test, two tests of hand speed, measurements of muscle strength, and a set of submaximal, steady contractions. The steadiness tasks involved single and double actions requiring isometric contractions in the directions of wrist extension, a pinch between the index finger and thumb, and index finger abduction. Time to complete the grooved pegboard test ranged from 41.5 to 67.5 s. The pegboard times (53.9 ± 6.2 s) were not correlated with any of the strength measurements or the reaction time test of hand speed. A stepwise, multiple-regression analysis indicated that much of the variance ( R2 = 0.70) in pegboard times could be explained by a model that comprised two predictor variables derived from the steadiness tasks: time to match the target during a rapid force-matching task and force steadiness (coefficient of variation for force) during a single-action task. Moreover, the pegboard times were significantly faster for women (51.7 ± 6.8 s) than men (56.1 ± 4.9 s). Participants with slower pegboard times seemed to place a greater emphasis on accuracy than speed as they had longer times to match the target during the rapid force-matching task and exhibited superior force steadiness during the single-action task.


2013 ◽  
Vol 22 (2) ◽  
pp. 82-85 ◽  
Author(s):  
So-Min Hwang ◽  
Jang Hyuk Kim ◽  
Hong-Il Kim ◽  
Yong-Hui Jung ◽  
Hyung-Do Kim

1989 ◽  
Vol 17 (2) ◽  
pp. 86-99 ◽  
Author(s):  
I. Gardner ◽  
M. Theves

Abstract During a cornering maneuver by a vehicle, high forces are exerted on the tire's footprint and in the contact zone between the tire and the rim. To optimize the design of these components, a method is presented whereby the forces at the tire-rim interface and between the tire and roadway may be predicted using finite element analysis. The cornering tire is modeled quasi-statically using a nonlinear geometric approach, with a lateral force and a slip angle applied to the spindle of the wheel to simulate the cornering loads. These values were obtained experimentally from a force and moment machine. This procedure avoids the need for a costly dynamic analysis. Good agreement was obtained with experimental results for self-aligning torque, giving confidence in the results obtained in the tire footprint and at the rim. The model allows prediction of the geometry and of the pressure distributions in the footprint, since friction and slip effects in this area were considered. The model lends itself to further refinement for improved accuracy and additional applications.


1993 ◽  
Vol 21 (2) ◽  
pp. 91-119 ◽  
Author(s):  
H. S. Radt ◽  
D. A. Glemming

Abstract Semi-empirical theories of tire mechanics are employed to determine appropriate means to normalize forces, moments, angles, and slip ratios. Force and moment measurements on a P195/70R 14 tire were normalized to show that data at different loads could then be superimposed, yielding close to one normalized curve. Included are lateral force, self-aligning torque, and overturning moment as a function of slip angle, inclination angle, slip ratio, and combinations. It is shown that, by proper normalization of the data, one need only determine one normalized force function that applies to combinations of slip angle, camber angle, and load or slip angle, slip ratio, and load. Normalized curves are compared for the effects of inflation pressure and surface water thickness. Potential benefits as well as limitations and deficiencies of the approach are presented.


1980 ◽  
Vol 8 (1) ◽  
pp. 3-9 ◽  
Author(s):  
C. W. Bert

Abstract Ply steer is a rolling contact phenomenon which manifests itself as a lateral force acting at the ground plane of a tire constrained in yaw or a change in slip angle of a tire free to yaw. It has long been known that radial tires generally exhibit greater ply steer than do bias tires. However, the only previously published quantitative analysis of this phenomenon considered the multi-layer cord-rubber composite by means of netting analysis, which is not very accurate at cord angles typical of radial tire belts. A simple, explicit expression is developed herein by combining modern composite laminate theory with two very simple, uniform-stress-state tire-road contact models. The ply-steer results predicted by the resulting expressions are compared with some experimental results and the agreement is found to be reasonably satisfactory.


1995 ◽  
Vol 23 (4) ◽  
pp. 238-255 ◽  
Author(s):  
E. H. Sakai

Abstract The contact conditions of a tire with the road surface have a close relationship to various properties of the tire and are among the most important characteristics in evaluating the performance of the tire. In this research, a new measurement device was developed that allows the contact stress distribution to be quantified and visualized. The measuring principle of this device is that the light absorption at the interface between an optical prism and an evenly ground or worn rubber surface is a function of contact pressure. The light absorption can be measured at a number of points on the surface to obtain the pressure distribution. Using this device, the contact pressure distribution of a rubber disk loaded against a plate was measured. It was found that the pressure distribution was not flat but varied greatly depending upon the height and diameter of the rubber disk. The variation can be explained by a “spring” effect, a “liquid” effect, and an “edge” effect of the rubber disk. Next, the measurement and image processing techniques were applied to a loaded tire. A very high definition image was obtained that displayed the true contact area, the shape of the area, and the pressure distribution from which irregular wear was easily detected. Finally, the deformation of the contact area and changes in the pressure distribution in the tread rubber block were measured when a lateral force was applied to the loaded tire.


2020 ◽  
Vol 132 (5) ◽  
pp. 1358-1366
Author(s):  
Chao-Hung Kuo ◽  
Timothy M. Blakely ◽  
Jeremiah D. Wander ◽  
Devapratim Sarma ◽  
Jing Wu ◽  
...  

OBJECTIVEThe activation of the sensorimotor cortex as measured by electrocorticographic (ECoG) signals has been correlated with contralateral hand movements in humans, as precisely as the level of individual digits. However, the relationship between individual and multiple synergistic finger movements and the neural signal as detected by ECoG has not been fully explored. The authors used intraoperative high-resolution micro-ECoG (µECoG) on the sensorimotor cortex to link neural signals to finger movements across several context-specific motor tasks.METHODSThree neurosurgical patients with cortical lesions over eloquent regions participated. During awake craniotomy, a sensorimotor cortex area of hand movement was localized by high-frequency responses measured by an 8 × 8 µECoG grid of 3-mm interelectrode spacing. Patients performed a flexion movement of the thumb or index finger, or a pinch movement of both, based on a visual cue. High-gamma (HG; 70–230 Hz) filtered µECoG was used to identify dominant electrodes associated with thumb and index movement. Hand movements were recorded by a dataglove simultaneously with µECoG recording.RESULTSIn all 3 patients, the electrodes controlling thumb and index finger movements were identifiable approximately 3–6-mm apart by the HG-filtered µECoG signal. For HG power of cortical activation measured with µECoG, the thumb and index signals in the pinch movement were similar to those observed during thumb-only and index-only movement, respectively (all p > 0.05). Index finger movements, measured by the dataglove joint angles, were similar in both the index-only and pinch movements (p > 0.05). However, despite similar activation across the conditions, markedly decreased thumb movement was observed in pinch relative to independent thumb-only movement (all p < 0.05).CONCLUSIONSHG-filtered µECoG signals effectively identify dominant regions associated with thumb and index finger movement. For pinch, the µECoG signal comprises a combination of the signals from individual thumb and index movements. However, while the relationship between the index finger joint angle and HG-filtered signal remains consistent between conditions, there is not a fixed relationship for thumb movement. Although the HG-filtered µECoG signal is similar in both thumb-only and pinch conditions, the actual thumb movement is markedly smaller in the pinch condition than in the thumb-only condition. This implies a nonlinear relationship between the cortical signal and the motor output for some, but importantly not all, movement types. This analysis provides insight into the tuning of the motor cortex toward specific types of motor behaviors.


Sign in / Sign up

Export Citation Format

Share Document