Synthesis of Polycrystalline Silicon Carbide (SiC) Thin Films Using Pulsed Laser Deposition

Author(s):  
B. Venkataramesh ◽  
Nilesh J. Vasa
2021 ◽  
Vol 9 (2) ◽  
pp. 46-50
Author(s):  
Muhanad A. Ahmed ◽  
Mohammed F. Mohammed Sabri ◽  
Wathiq R. Abed

In this paper, nanostructured silicon carbide (SiC) thin films are deposited onto glass substrate using pulsed laser deposition technique. Electrical and optical characterizations such as conductivity, resistivity, transmission, Seeback effect, absorption, absorption coefficient, energy band gap, and extinction coefficient as a function of photon energy, and the effect of thin films thickness on transmission are carried out to characterize the prepared samples. Results showed that the prepared SiC thin film is an n-type semiconductor with an indirect bandgap of ~3 eV, 448 nm cutoff wavelength, 3.4395 × 104 cm−1 absorption coefficient and 0.154 extinction coefficient. The surface morphology of the SiC thin films is studied using scanning electron microscope at a substrate temperature of 400 °C and it is found that the grain size of the prepared SiC thin film is about 30 nm. As such, the nano thin films optical and structural characteristics enable the films to be used as gases sensors in many optoelectronic devices such as the environment and ultraviolet photodiode.


2004 ◽  
Vol 818 ◽  
Author(s):  
H. Kawasaki ◽  
Y. Suda ◽  
T. Ohshima ◽  
T. Ueda ◽  
S. Nakashima

AbstractWe have developed a new pulsed laser deposition technique using two Nd:YAG laser beams for the nucleation of silicon carbide (SiC) crystalline nano-particles and single crystalline SiC thin films. Transmission electron microscopy and atomic force microscopy observation suggest that several nanometer size SiC particles can be prepared by the new pulsed laser deposition (PLD) method using two Nd:YAG laser beams (1064nm and 532nm). X ray photoelectron spectroscopy measurements suggest that the silicon/carbon composition ratio of the prepared SiC thin films can be controlled by laser fluence and wavelength.


2019 ◽  
Vol 48 (6) ◽  
pp. 3468-3478 ◽  
Author(s):  
Emmanuel Paneerselvam ◽  
Vinoth Kumar Lakshmi Narayanan ◽  
Nilesh J. Vasa ◽  
Mitsuhiro Higashihata ◽  
Daisuke Nakamura ◽  
...  

2005 ◽  
Vol 248 (1-4) ◽  
pp. 355-359 ◽  
Author(s):  
J.P. Borrajo ◽  
J. Serra ◽  
S. Liste ◽  
P. González ◽  
S. Chiussi ◽  
...  

2001 ◽  
Vol 11 (PR11) ◽  
pp. Pr11-65-Pr11-69
Author(s):  
N. Lemée ◽  
H. Bouyanfif ◽  
J. L. Dellis ◽  
M. El Marssi ◽  
M. G. Karkut ◽  
...  

2001 ◽  
Vol 11 (PR11) ◽  
pp. Pr11-133-Pr11-137
Author(s):  
J. R. Duclère ◽  
M. Guilloux-Viry ◽  
A. Perrin ◽  
A. Dauscher ◽  
S. Weber ◽  
...  

2002 ◽  
Vol 720 ◽  
Author(s):  
Costas G. Fountzoulas ◽  
Daniel M. Potrepka ◽  
Steven C. Tidrow

AbstractFerroelectrics are multicomponent materials with a wealth of interesting and useful properties, such as piezoelectricity. The dielectric constant of the BSTO ferroelectrics can be changed by applying an electric field. Variable dielectric constant results in a change in phase velocity in the device allowing it to be tuned in real time for a particular application. The microstructure of the film influences the electronic properties which in turn influences the performance of the film. Ba0.6Sr0.4Ti1-y(A 3+, B5+)yO3 thin films, of nominal thickness of 0.65 μm, were synthesized initially at substrate temperatures of 400°C, and subsequently annealed to 750°C, on LaAlO3 (100) substrates, previously coated with LaSrCoO conductive buffer layer, using the pulsed laser deposition technique. The microstructural and physical characteristics of the postannealed thin films have been studied using x-ray diffraction, scanning electron microscopy, and nano indentation and are reported. Results of capacitance measurements are used to obtain dielectric constant and tunability in the paraelectric (T>Tc) regime.


2021 ◽  
Vol 127 ◽  
pp. 105716
Author(s):  
Tianzhen Guo ◽  
Dan Wang ◽  
Yajun Yang ◽  
Xiaoyong Xiong ◽  
Kelin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document