Closed-loop control of cavity flow using a reduced-order model based on balanced truncation

Author(s):  
A. Barbagallo ◽  
D. Sipp ◽  
P. J. Schmid
2012 ◽  
Vol 703 ◽  
pp. 326-362 ◽  
Author(s):  
Alexandre Barbagallo ◽  
Gregory Dergham ◽  
Denis Sipp ◽  
Peter J. Schmid ◽  
Jean-Christophe Robinet

AbstractThe two-dimensional, incompressible flow over a rounded backward-facing step at Reynolds number $\mathit{Re}= 600$ is characterized by a detachment of the flow close to the step followed by a recirculation zone. Even though the flow is globally stable, perturbations are amplified as they are convected along the shear layer, and the presence of upstream random noise renders the flow unsteady, leading to a broadband spectrum of excited frequencies. This paper is aimed at suppressing this unsteadiness using a controller that converts a shear-stress measurement taken from a wall-mounted sensor into a control law that is supplied to an actuator. A comprehensive study of various components of closed-loop control design – covering sensor placement, choice and influence of the cost functional, accuracy of the reduced-order model, compensator stability and performance – shows that successful control of this flow requires a judicious balance between estimation speed and estimation accuracy, and between stability limits and performance requirements. The inherent amplification behaviour of the flow can be reduced by an order of magnitude if the above-mentioned constraints are observed. In particular, to achieve superior controller performance, the estimation sensor should be placed upstream near the actuator to ensure sufficient estimation speed. Also, if high-performance compensators are sought, a very accurate reduced-order model is required, especially for the dynamics between the actuator and the estimation sensor; otherwise, very minute errors even at low energies and high frequencies may render the large-scale compensated linearized simulation unstable. Finally, coupling the linear compensator to nonlinear simulations shows a gradual deterioration in control performance as the amplitude of the noise increases.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2881
Author(s):  
Nebiyeleul Daniel Amare ◽  
Doe Hun Kim ◽  
Sun Jick Yang ◽  
Young Ik Son

One common technique employed in control system design to minimize system model complexity is model order reduction. However, controllers designed by using a reduced-order model have the potential to cause the closed-loop system to become unstable when applied to the original full-order system. Additionally, system performance improvement techniques such as disturbance observers produce unpredictable outcomes when augmented with reduced-order model-based controllers. In particular, the closed-loop system stability is compromised when a large value of observer gain is employed. In this paper, a boundary condition for the controller and observer design parameters in which the closed-loop system stability is maintained is proposed for a reduced-order proportional-integral observer compensated reduced-order model-based controller. The boundary condition was obtained by performing the stability analysis of the closed-loop system using the root locus method and the Routh-Hurwitz criterion. Both the observer and the state feedback controller were designed using a reduced-order system model based on the singular perturbation theory. The result of the theoretical analysis is validated through computer simulations using a DC (direct current) motor position control problem.


Author(s):  
Edgar Caraballo ◽  
X. Yuan ◽  
Jesse Little ◽  
Marco Debiasi ◽  
P Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document