Chapter 12 C4 Gene Expression in Mesophyll and Bundle Sheath Cells

Author(s):  
James O. Berry ◽  
Minesh Patel ◽  
Amy Zielinski
2021 ◽  
Author(s):  
Lei Hua ◽  
Sean R. Stevenson ◽  
Ivan Reyna-Llorens ◽  
Haiyan Xiong ◽  
Stanislav Kopriva ◽  
...  

Abstract Leaves comprise multiple cell types but our knowledge of the patterns of gene expression that underpin their functional specialization is fragmentary. Our understanding and ability to undertake rational redesign of these cells is therefore limited. We aimed to identify genes associated with the incompletely understood bundle sheath of C3 plants, which represents a key target associated with engineering traits such as C4 photosynthesis into rice. To better understand veins, bundle sheath and mesophyll cells of rice we used laser capture microdissection followed by deep sequencing. Gene expression of the mesophyll is conditioned to allow coenzyme metabolism and redox homeostasis as well as photosynthesis. In contrast, the bundle sheath is specialized in water transport, sulphur assimilation and jasmonic acid biosynthesis. Despite the small chloroplast compartment of bundle sheath cells, substantial photosynthesis gene expression was detected. These patterns of gene expression were not associated with presence/absence of particular transcription factors in each cell type, but rather gradients in expression across the leaf. Comparative analysis with C3Arabidopsis identified a small gene-set preferentially expressed in bundle sheath cells of both species. This included genes encoding transcription factors from fourteen orthogroups, and proteins allowing water transport, sulphate assimilation and jasmonic acid synthesis. The most parsimonious explanation for our findings is that bundle sheath cells from the last common ancestor of rice and Arabidopsis was specialized in this manner, and since the species diverged these patterns of gene expression have been maintained. Significance statement The role of bundle sheath cells in C4 species have been studied intensively but this is not the case in leaves that use the ancestral C3 pathway. Here, we show that gene expression in the bundle sheath of rice is specialized to allow sulphate and nitrate reduction, water transport and jasmonate synthesis, and comparative analysis with Arabidopsis indicates ancient roles for bundle sheath cells in water transport, sulphur and jasmonate synthesis.


1974 ◽  
Vol 52 (12) ◽  
pp. 2599-2605 ◽  
Author(s):  
C. K. M. Rathnam ◽  
V. S. R. Das

The intercellular and intracellular distributions of nitrate assimilating enzymes were studied. Nitrate reductase was found to be localized on the chloroplast envelope membranes. The chloroplastic NADPH – glutamate dehydrogenase was concentrated in the mesophyll cells. The extrachloroplastic NADH – glutamate dehydrogenase was localized in the bundle sheath cells. Glutamate synthesized in the mesophyll chloroplasts was interpreted to be utilized exclusively in the synthesis of aspartate, while in the bundle sheath cells it was thought to be consumed in other cellular metabolic processes. Based on the results, a scheme is proposed to account for the nitrate metabolism in the leaves of Eleusine coracana Gaertn. in relation to its aspartate-type C-4 pathway of photosynthesis.


Sign in / Sign up

Export Citation Format

Share Document