Community Based Management of Traditional Water Resources in Western Himalayan Region

Author(s):  
Sushil Kumar



Author(s):  
Sejabaledi Agnes Rankoana

Purpose The study explored the impacts of climate change on water resources, and the community-based adaptation practices adopted to ensure water security in a rural community in Limpopo Province, South Africa. Design/methodology/approach The study was conducted in Limpopo Province, South Africa. The participatory approach was used to allow community members to share their challenges of water scarcity, and the measures they have developed to cope with inconsistent water supply. Findings The study results show that the community obtains water for household consumption from the reticulation system supplied by Mutale River and the community borehole. These resources are negatively impacted by drought, change in the frequency and distribution of rainfall, and increased temperature patterns. The water levels in the river and borehole have declined, resulting in unsustainable water supply. The community-based adaptation practices facilitated by the water committee include observance of restrictions and regulations on the water resources use. Others involve securing water from neighbouring resources. Originality/value This type of community-based action in response to climate change could be used as part of rural water management strategies under climate change.



Author(s):  
S. Mondal ◽  
M. Sivakandan ◽  
S. Sarkhel ◽  
M.V. Sunil Krishna ◽  
Martin G. Mlynczak ◽  
...  




2010 ◽  
Vol 62 (4) ◽  
pp. 1245-1252 ◽  
Author(s):  
Harpreet Kaur Kanwal ◽  
Karan Acharya ◽  
G. Ramesh ◽  
M. Sudhakara Reddy




2017 ◽  
Vol 30 (19) ◽  
pp. 7777-7799 ◽  
Author(s):  
Jitendra Kumar Meher ◽  
Lalu Das ◽  
Javed Akhter ◽  
Rasmus E. Benestad ◽  
Abdelkader Mezghani

Abstract The western Himalayan region (WHR) was subject to a significant negative trend in the annual and monsoon rainfall during 1902–2005. Annual and seasonal rainfall change over the WHR of India was estimated using 22 rain gauge station rainfall data from the India Meteorological Department. The performance of 13 global climate models (GCMs) from phase 3 of the Coupled Model Intercomparison Project (CMIP3) and 42 GCMs from CMIP5 was evaluated through multiple analysis: the evaluation of the mean annual cycle, annual cycles of interannual variability, spatial patterns, trends, and signal-to-noise ratio. In general, CMIP5 GCMs were more skillful in terms of simulating the annual cycle of interannual variability compared to CMIP3 GCMs. The CMIP3 GCMs failed to reproduce the observed trend, whereas approximately 50% of the CMIP5 GCMs reproduced the statistical distribution of short-term (30 yr) trend estimates than for the longer-term (99 yr) trends from CMIP5 GCMs. GCMs from both CMIP3 and CMIP5 were able to simulate the spatial distribution of observed rainfall in premonsoon and winter months. Based on performance, each model of CMIP3 and CMIP5 was given an overall rank, which puts the high-resolution version of the MIROC3.2 model [MIROC3.2 (hires)] and MIROC5 at the top in CMIP3 and CMIP5, respectively. Robustness of the ranking was judged through a sensitivity analysis, which indicated that ranks were independent during the process of adding or removing any individual method. It also revealed that trend analysis was not a robust method of judging performances of the models as compared to other methods.



Author(s):  
Muhammad Shoaib Amjad ◽  
Rubab Khurshid ◽  
Arshad Mehmood Abbasi ◽  
Muhammad Altaf ◽  
Huma Qureshi ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document