Flexible Floating Platform

Author(s):  
A. J. Hermans
Keyword(s):  
Author(s):  
P.H. McLaughlin

A shelved structure for the support of an electron optical column affords advantages both to the designer and the user. A lens may be removed for cleaning for example, without demounting the remaining lenses. A custom device for another example, may be placed on a shelf, substituting for the standard lens perhaps so that some specialized research may be undertaken. Especially advantageous is a shelved arrangement if the column assembly is designed to hang from a supporting structure such as a gas borne floating platform, as is the case with the system described below.As shown on the schematic, a floating platform (I) supports the electron source apparatus (2) and a U-shaped column support shelf (3). The column support shelf acts as a key for locating and supporting three struts (4) which with nuts (5) support the condenser shelf (6), the objective shelf (7), the upper projector shelf (8), and the lower projector shelf (9).


2021 ◽  
Vol 1047 (1) ◽  
pp. 012130
Author(s):  
S Y Dudnikov ◽  
V V Vertegel ◽  
V V Golovin ◽  
Y N Tyschuk

2021 ◽  
Vol 11 (9) ◽  
pp. 4259
Author(s):  
Anna Szymczak-Graczyk

This article presents the effect of taking into account the subgrade coefficient on static work of a pontoon with an internal partition, made in one stage and treated computationally as a monolithic closed rectangular tank. An exemplary pontoon is a single, ready-made shipping element that can be used as a float for a building. By assembling several floats together, the structure can form a floating platform. Due to the increasingly violent weather phenomena and the necessity to ensure safe habitation for people in countries at risk of inundation or flooding, amphibious construction could provide new solutions. This article presents calculations for a real pontoon made in one stage for the purpose of conducting research. Since it is a closed structure without any joint or contact, it can be concluded that it is impossible for water to get inside. However, in order to exclude the possibility of the pontoon filling with water, its interior was filled with Styrofoam. For static calculations, the variational approach to the finite difference method was used, assuming the condition for the minimum energy of elastic deflection during bending, taking into account the cooperation of the tank walls with the Styrofoam filling treated as a Winkler elastic substrate and assuming that Poisson’s ratio ν = 0. Based on the results, charts were made illustrating the change in bending moments at the characteristic points of the analysed tank depending on acting loads. The calculations included hydrostatic loads on the upper plate and ice floe pressure as well as buoyancy, stability and metacentric height of the pontoon. The aim of the study is to show a finished product—a single-piece pontoon that can be a prefabricated element designed for use as a float for “houses on water”.


2021 ◽  
Vol 9 (2) ◽  
pp. 103
Author(s):  
Dongsheng Qiao ◽  
Binbin Li ◽  
Jun Yan ◽  
Yu Qin ◽  
Haizhi Liang ◽  
...  

During the long-term service condition, the mooring line of the deep-water floating platform may fail due to various reasons, such as overloading caused by an accidental condition or performance deterioration. Therefore, the safety performance under the transient responses process should be evaluated in advance, during the design phase. A series of time-domain numerical simulations for evaluating the performance changes of a Floating Production Storage and Offloading (FPSO) with different broken modes of mooring lines was carried out. The broken conditions include the single mooring line or two mooring lines failure under ipsilateral, opposite, and adjacent sides. The resulting transient and following steady-state responses of the vessel and the mooring line tensions were analyzed, and the corresponding influence mechanism was investigated. The accidental failure of a single or two mooring lines changes the watch circle of the vessel and the tension redistribution of the remaining mooring lines. The results indicated that the failure of mooring lines mainly influences the responses of sway, surge, and yaw, and the change rule is closely related to the stiffness and symmetry of the mooring system. The simulation results could give a profound understanding of the transient-effects influence process of mooring line failure, and the suggestions are given to account for the transient effects in the design of the mooring system.


2000 ◽  
Vol 27 (12) ◽  
pp. 1407-1440 ◽  
Author(s):  
K.F Cheung ◽  
A.C Phadke ◽  
D.A Smith ◽  
S.K Lee ◽  
L.H Seidl

2014 ◽  
Author(s):  
Jan-Diederik Advocaat ◽  
Jan M. Munkeby ◽  
Jill Jørgensen ◽  
Marco Rioda ◽  
Hilde Benedikte Østlund

Author(s):  
Huai Zhao ◽  
Daolin Xu ◽  
Haicheng Zhang ◽  
Qijia Shi

The paper aims to provide a novel flexible connector model for the connection of a multi-modular floating platform. The structural model of the connector is presented. To evaluate connector loads, the governing equation for a modularized floating platform is established using the Rigid Module Flexible Connector (RMFC) model. The dynamic analysis for a two-module floating platform is carried out by using the frequency domain approach in random waves and the extreme loads of the flexible connector are estimated. The finite element method is applied for strength and stiffness analysis to assess the performance of the connector.


Sign in / Sign up

Export Citation Format

Share Document