An Implementation Scheme of BB84-Protocol-Based Quantum Key Distribution System

Author(s):  
Shao-sheng Jiang ◽  
Rui-nan Chi ◽  
Xiao-jun Wen ◽  
Junbin Fang
Author(s):  
Ming Fang ◽  
Ya-Ping Li ◽  
Li Fei

Quantum key distribution (QKD) allows authenticated parties to share secure keys. Its security comes from quantum physics rather than computational complexity. The previous work has been able to demonstrate the security of the BB84 protocol based on the uncertainty principle, entanglement purification and information theory. In the security proof method based on entanglement purification, it is assumed that the information of Calderbank–Shor–Steane (CSS) error correction code cannot be leaked, otherwise, it is insecure. However, there is no quantitative analysis of the relationship between the parameter of CSS code and the amount of information leaked. In the attack and defense strategy of the actual quantum key distribution system, especially in the application of the device that is easy to lose or out of control, it is necessary to assess the impact of the parameter leakage. In this paper, we derive the relationship between the leaked parameter of CSS code and the amount of the final key leakage based on the BB84 protocol. Based on this formula, we simulated the impact of different CSS code parameter leaks on the final key amount. Through the analysis of simulation results, the security of the BB84 protocol is inversely proportional to the value of [Formula: see text] and [Formula: see text] in the case of the CSS code leak.


2013 ◽  
Vol 13 (9&10) ◽  
pp. 827-832
Author(s):  
Zhen-Qiang Yin ◽  
Wei Chen ◽  
Shuang Wang ◽  
Hong-Wei Li ◽  
Guang-Can Guo ◽  
...  

For the past few years, the security of practical quantum key distribution systems has attracted a lot of attention. Device-independent quantum key distribution was proposed to design a real-life secure quantum key distribution system with imperfect and untrusted quantum devices. In this paper, we analyzed the security of BB84 protocol in a device-independent scenario based on the entanglement distillation method. Since most of the reported loopholes are in receivers of quantum key distribution systems, we focus on condition that the transmitter of the system is perfectly coincident with the requirement of the BB84 protocol, while the receiver can be controlled by eavesdropper. Finally, the lower bound of the final secret-key rate was proposed and we explained why the secure-key rate is similar to the well-known result for the original entanglement distillation protocol.


2014 ◽  
Vol 14 (3&4) ◽  
pp. 217-235
Author(s):  
Viacheslav Burenkov ◽  
Bing Qi ◽  
Ben Fortescue ◽  
Hoi-Kwong Lo

The security of a high speed quantum key distribution system with finite detector dead time $\tau$ is analyzed. When the transmission rate becomes higher than the maximum count rate of the individual detectors ($1/\tau$), security issues affect the scheme for sifting bits. Analytical calculations and numerical simulations of the Bennett-Brassard BB84 protocol are performed. We study Rogers et al.'s scheme (further information is available in [D. J. Rogers, J. C. Bienfang, A. Nakassis, H. Xu, and C. W. Clark, New J. Phys.~{\bf 9}, 319 (2007)]) in the presence of an active eavesdropper Eve who has the power to perform an intercept-resend attack. It is shown that Rogers et al.'s scheme is no longer guaranteed to be secure. More specifically, Eve can induce a basis-dependent detection efficiency at the receiver's end. Modified key sifting schemes that are basis-independent and thus secure in the presence of dead time and an active eavesdropper are then introduced. We analyze and compare these secure sifting schemes for this active Eve scenario, and calculate and simulate their key generation rate. It is shown that the maximum key generation rate is $1/(2\tau)$ for passive basis selection, and $1/\tau$ for active basis selection. The security analysis for finite detector dead time is also extended to the decoy state BB84 protocol for one particular secure sifting scheme.


2017 ◽  
Vol 25 (17) ◽  
pp. 20045 ◽  
Author(s):  
Heasin Ko ◽  
Byung-Seok Choi ◽  
Joong-Seon Choe ◽  
Kap-Joong Kim ◽  
Jong-Hoi Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document