Stress from Viral Infection: Inhibition of Photosynthesis Following Infection of Tobacco with Tobacco Mosaic Virus

Author(s):  
Richard A. J. Hodgson ◽  
Roger N. Beachy ◽  
Himadri B. Pakrasi
2020 ◽  
Vol 10 (15) ◽  
pp. 5054 ◽  
Author(s):  
Ahmed Abdelkhalek ◽  
Abdulaziz A. Al-Askar

Globally, plant viral infection is one of the most difficult challenges of food security, where considerable losses in crop production occur. Nanoparticles are an effective control agent against numerous plant pathogens. However, there is limited knowledge concerning their effects against viral infection. In the present study, the green synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf extract of Mentha spicata was achieved. X-ray diffraction patterns confirmed the crystalline nature of the prepared ZnO NPs. Dynamic light scattering and scanning electron microscopy analyses revealed that the resultant ZnO NPs were spherical in shape with a particle size ranged from 11 to 88 nm. Fourier transmission infrared spectroscopy detected different functional groups, capping and stability agents, and showed Zn-O bond within wavenumber of 487 cm−1. Under greenhouse conditions, the antiviral activity of biological synthesized ZnO NPs (100 µg/mL) against Tobacco mosaic virus (TMV) was evaluated. The double foliar application of the prepared ZnO NPs, 24 h before and 24 h after TMV-inoculation, was the most effective treatment that showed a 90.21% reduction of viral accumulation level and disease severity. Additionally, the transcriptional levels of PAL, PR-1 (salicylic acid marker gene), CHS, and POD genes were induced and up-regulated in all ZnO NPs treated plants. Notably, the results exhibited that aqueous extract of Mentha spicata was an effective reducing agent for the green synthesis of ZnO NPs, which showed significant antiviral activity. Finally, the detected protective and curative activity of ZnO NPs against TMV can encourage us to recommend its application for plant viral disease management. To our knowledge, this is the first study describing the antiviral activity of the green synthesized ZnO NPs.


2006 ◽  
Vol 1 (3) ◽  
pp. 386-398 ◽  
Author(s):  
Gheorghe Chiriac ◽  
Larisa Andronic ◽  
Valeriu Bujoreanu ◽  
Liliana Marii

AbstractThe evidence of increased crossing over rate in tomato hybrids infected with TAV (Tomato aspermy virus), PVX (Potato virus X), TMV (Tobacco mosaic virus), TMV+PVX indicates the recombinogenic effect of viral infection. Cytological studies of the early diakinesis in healthy and virus-infected tomato revealed significant changes in chiasma number and position. The most significant changes were established for bivalents with two interstitial chiasmata and with one terminal and one interstitial. The data obtained indicate redistribution of the chiasmata position and induction of additional exchanges. The virus-induced recombination is segment-specific and depends on the host plant genotype, virus infection and the interaction between them.


1984 ◽  
Vol 62 (10) ◽  
pp. 1984-1988 ◽  
Author(s):  
C. M. Kearney ◽  
J. H. Wu

The β-1,3-glucan callose is thought to form a seal which surrounds viral local lesions and prevents viral spread in many plant hosts. Therefore, we investigated the role of host β-1,3-glucanase in facilitating viral spread. The following were compared for lesion size (indicating viral spread rate) and β-1,3-glucanase activity: (i) inoculated excised leaves of Phaseolus vulgaris L. cv. Pinto supplied with sugar (small lesions) or deprived of sugar (large lesions); (ii) Nicotiana glutinosa L. infected with the VM strain (small lesions) or the U1 strain (large lesions) of tobacco mosaic virus; and (iii) Nicotiana sylvestris Spegaz. infected with the VM strain (small lesions) or the U2 strain (large lesions) of tobacco mosaic virus. In all cases, the larger, more rapidly spreading viral lesions did not have significantly higher levels of β-1,3-glucanase activity than the corresponding smaller lesions. Nicotiana sylvestris leaves with a systemic viral infection had a β-1,3-glucanase activity lower than that of leaves with local lesions. Finally, β-1,3-glucanase activity was stimulated to the same extent by a slowly developing abiotic necrosis as by local lesions of tobacco mosaic virus, β-1,3-Glucanase activity may therefore increase during localized viral infection as a result of the wounding associated with necrotic viral lesions.


2020 ◽  
Author(s):  
Liliana Mărîi ◽  
◽  
Larisa Andronic ◽  
Svetlana Smerea ◽  
Irina Erhan ◽  
...  

The defensive response of 4 tomato genotypes to Tobacco Mosaic Virus or Tomato Aspermy Virus was evaluated according to 3 indices - peroxidase and catalase activities and hydrogen peroxide content. The response was differentiated according to the applied viral infection, the genotype and dynamics of the infection process. Particularities have been attested in the reaction of the antioxidative response at different stages of the pathogenesis - increasing or decreasing of the evaluated indices compared to the healthy control.


Author(s):  
Irwin Bendet ◽  
Nabil Rizk

Preliminary results reported last year on the ion etching of tobacco mosaic virus indicated that the diameter of the virus decreased more rapidly at 10KV than at 5KV, perhaps reaching a constant value before disappearing completely.In order to follow the effects of ion etching on TMV more quantitatively we have designed and built a second apparatus (Fig. 1), which incorporates monitoring devices for measuring ion current and vacuum as well as accelerating voltage. In addition, the beam diameter has been increased to approximately 1 cm., so that ten electron microscope grids can be exposed to the beam simultaneously.


Author(s):  
Egbert W. Henry

Tobacco mosaic virus (TMV) infection has been studied in several investigations of Nicotiana tabacum leaf tissue. Earlier studies have suggested that TMV infection does not have precise infective selectivity vs. specific types of tissues. Also, such tissue conditions as vein banding, vein clearing, liquification and suberization may result from causes other than direct TMV infection. At the present time, it is thought that the plasmodesmata, ectodesmata and perhaps the plasmodesmata of the basal septum may represent the actual or more precise sites of TMV infection.TMV infection has been implicated in elevated levels of oxidative metabolism; also, TMV infection may have a major role in host resistance vs. concentration levels of phenolic-type enzymes. Therefore, enzymes such as polyphenol oxidase, peroxidase and phenylalamine ammonia-lyase may show an increase in activity in response to TMV infection. It has been reported that TMV infection may cause a decrease in o-dihydric phenols (chlorogenic acid) in some tissues.


Sign in / Sign up

Export Citation Format

Share Document