Barley Mutants - Diversity, Genetics and Plant Breeding Value

Author(s):  
U. Lundqvist

A haploid is an organism that looks like a sporophyte, but has the chromosome complement of a reduced gamete. There are several ways in which haploids can occur or be induced in vivo : spontaneously, mostly associated with polyembryony, and through abnormal processes after crosses, like pseudogamy, semigamy, preferential elimination of the chromosomes of one parental species, and androgenesis. In the crops described, haploids are or are near to being used in basic research and plant breeding. The application of haploids in breeding self-pollinated crops is based on their potential for producing fully homozygous lines in one generation, which can be assessed directly in the field. Early generation testing of segregating populations is possible through haploids, because doubled haploids (DH) possess additive variance only. Haploids can also be applied in classical breeding programmes to make these more efficient through improved reliability of selection. The application of haploids in cross-pollinated crops is also based on a rapid production of DH-lines, which can be used as inbred lines for the production of hybrid varieties. By means of haploids all natural barriers to repeated selfing are bypassed. In autotetraploid crops there are two types of haploid. One cycle of haploidization leads to dihaploids; a second cycle produces monohaploids. The significance of dihaploids is in their greatly simplified genetics and breeding and in the possibility of estimation of the breeding value of tetraploid cultivars by assessing their dihaploids. The main drawback of dihaploids is their restriction to two alleles per locus. Also, after doubling, it is impossible to achieve tetra-allelism at many loci, the requirement for maximal performance of autotetraploid cultivars. Tetra-allelism can be obtained when improved dihaploids have a genetically controlled mechanism of forming highly heterozygous restitution gametes with the unreduced number of chromosomes. Monohaploids, after doubling or twice doubling, may lead to fully homozygous diploids and tetraploids. These are important for basic research, but not yet for practical application. Meiotic data of potato homozygotes at three ploidy levels are presented.


1970 ◽  
Vol 21 ◽  
pp. 229-232
Author(s):  
O. Z. Shcherbyna ◽  
V. G. Mykhailov ◽  
O. O. Tymoshenko

Aim. The detailed research of plant-breeding value of the synthesized multiflorous forms with long inflorescence. Methods. The field and laboratory experiments for study of quantitative signs of varieties and hybrids with the statistical processing of data. Results. Synthesized multiflorous forms of soybean were characterized by greater duration of period of vegetation (135–150 days) and high of plants (100–160 cm). On the signs of inflorescence multiflorous forms were distinguished from existent varieties by the amount of flowers in inflorescence – from 9.2 to 32.8 (at plant-breeding varieties – 2.6–5.0), long inflorescence – to 18.6 and more cm (at plant-breeding varieties are 0.3 cm to 1.8 cm). These forms were characterized by the greater amount of pods and seed from a plant, by mass of seed from a plant, and also by the greater amount of knots, amount of branches of first-order than plant-breeding varieties and numbers. The hybrids of first generation by the productivity considerably exceeded both paternal forms. Mass of seed from a plant changed from a 32.00 g to 60.61 g. On duration of period of vegetation the hybrids of first generation were inter-mediate between paternal forms. Conclusions. Multiflorous forms of soybean with long inflorescens are important source of breeding work on increase of seed productivity. Keywords: soybean, multiflorous inflorescence, long inflorescence, varieties, hybrids.


Author(s):  
Abouzar Abouzari ◽  
Nafiseh Mahdi Nezhad

Citrus is the most economically important fruit crop in the world. In citrus, the concept of fruit quality comprises several other aspects intimately related to human health apart from physical attributes and diet components. Citrus is an excellent model to study fruit quality because of its peculiar fruiting, singular biochemistry and economical relevance. A citrus breeding programme starts with the selection of suitable parents and the planning of controlled crosses. Information on the breeding value of available parents and the heritability of specific characters is important in a plant breeding programme to aid the breeder in parent selection and the planning of controlled crosses. Major goals of variety breeding in citrus are mostly related to fruit quality, productivity and harvesting period. In a broad sense, citrus fruit quality includes many physical attributes like fruit color, fruit size, easy of peeling and seedlessness. These traits have become paramount in commercial citrus types and new cultivar being developed through plant breeding and selection of new sports. This paper focus on four main citrus characteristics that responsible for fruit quality and are the basis for judging the product acceptability by consumers. We also discuss the variety strategy for citrus quality improvement.


Author(s):  
M Cooper ◽  
O Powell ◽  
K P Voss-Fels ◽  
C D Messina ◽  
C Gho ◽  
...  

Abstract Plant breeding programs are designed and operated over multiple cycles to systematically change the genetic makeup of plants to achieve improved trait performance for a Target Population of Environments (TPE). Within each cycle, selection applied to the standing genetic variation within a structured reference population of genotypes (RPG) is the primary mechanism by which breeding programs make the desired genetic changes. Selection operates to change the frequencies of the alleles of the genes controlling trait variation within the RPG. The structure of the RPG and the TPE has important implications for the design of optimal breeding strategies. The breeder’s equation, together with the quantitative genetic theory behind the equation, informs many of the principles for design of breeding programs. The breeder’s equation can take many forms depending on the details of the breeding strategy. Through the genetic changes achieved by selection, the cultivated varieties of crops (cultivars) are improved for use in agriculture. From a breeding perspective, selection for specific trait combinations requires a quantitative link between the effects of the alleles of the genes impacted by selection and the trait phenotypes of plants and their breeding value. This gene-to-phenotype link function provides the G2P map for one to many traits. For complex traits controlled by many genes, the infinitesimal model for trait genetic variation is the dominant G2P model of quantitative genetics. Here we consider motivations and potential benefits of using the hierarchical structure of crop models as CGM-G2P trait link functions in combination with the infinitesimal model for the design and optimisation of selection in breeding programs.


Author(s):  
Neeraj Budhlakoti ◽  
Dwijesh Chandra Mishra ◽  
Anil Rai ◽  
K.K. Chaturvedi ◽  
Anu Sharma ◽  
...  

Now a days, Genomic Selection (GS) became a preferable choice for selection of appropriate candidate for animal and plant breeding research. Various studies related to GS has been done recently where it has shown potential benefits and advantages over traditional and conventional plant breeding methods. GS has been successfully implemented in various animal and plant breeding programs. It reduces the total costs by selecting the animals at early stage hence shorten the generation interval. Genomic selection is the future of livestock and plant breeding as it improves the genetic gain by decreasing genetic interval and improving reliability. Although there is a need of further investigation to improve the accuracy of genomic estimated breeding value and manage long-term genetic gain. This article provides a brief review what we have achieved through GS till yet and what is future scope and perspective in the GS research.


Author(s):  
M Cooper ◽  
O Powell ◽  
KP Voss-Fels ◽  
CD Messina ◽  
C Gho ◽  
...  

AbstractPlant breeding programs are designed and operated over multiple cycles to systematically change the genetic makeup of plants to achieve improved trait performance for a Target Population of Environments (TPE). Within each cycle, selection applied to the standing genetic variation within a structured reference population of genotypes (RPG) is the primary mechanism by which breeding programs make the desired genetic changes. Selection operates to change the frequencies of the alleles of the genes controlling trait variation within the RPG. The structure of the RPG and the TPE has important implications for the design of optimal breeding strategies. The breeder’s equation, together with the quantitative genetic theory behind the equation, informs many of the principles for design of breeding programs. The breeder’s equation can take many forms depending on the details of the breeding strategy. Through the genetic changes achieved by selection, the cultivated varieties of crops (cultivars) are improved for use in agriculture. From a breeding perspective, selection for specific trait combinations requires a quantitative link between the effects of the alleles of the genes impacted by selection and the trait phenotypes of plants and their breeding value. This gene-to-phenotype link function provides the G2P map for one to many traits. For complex traits controlled by many genes, the infinitesimal model for trait genetic variation is the dominant G2P model of quantitative genetics. Here we consider motivations and potential benefits of using the hierarchical structure of crop models as CGM-G2P trait link functions in combination with the infinitesimal model for the design and optimisation of selection in breeding programs.


2018 ◽  
Author(s):  
Jolie WAX ◽  
Zhu Zhuo ◽  
Anna Bower ◽  
Jessica Cooper ◽  
Susan Gachara ◽  
...  

Author(s):  
Yu.V. Chesnokov ◽  
◽  
N.V. Kocherina ◽  
A.M. Artemyeva ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document