A rat model of intestinal hypersensitivity: mucosal mast cell activation following repeated feeding of antigen

1990 ◽  
pp. 771-772 ◽  
Author(s):  
M W Turner ◽  
G E Barnett ◽  
S Strobel
2015 ◽  
Vol 148 (4) ◽  
pp. S-711
Author(s):  
Hirokazu Sato ◽  
Linda Zhang ◽  
Philip Howles ◽  
William Sun ◽  
Ryota Hokari ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 135 ◽  
Author(s):  
Mercé Albert-Bayo ◽  
Irene Paracuellos ◽  
Ana M. González-Castro ◽  
Amanda Rodríguez-Urrutia ◽  
María J. Rodríguez-Lagunas ◽  
...  

The gastrointestinal tract harbours the largest population of mast cells in the body; this highly specialised leukocyte cell type is able to adapt its phenotype and function to the microenvironment in which it resides. Mast cells react to external and internal stimuli thanks to the variety of receptors they express, and carry out effector and regulatory tasks by means of the mediators of different natures they produce. Mast cells are fundamental elements of the intestinal barrier as they regulate epithelial function and integrity, modulate both innate and adaptive mucosal immunity, and maintain neuro-immune interactions, which are key to functioning of the gut. Disruption of the intestinal barrier is associated with increased passage of luminal antigens into the mucosa, which further facilitates mucosal mast cell activation, inflammatory responses, and altered mast cell–enteric nerve interaction. Despite intensive research showing gut dysfunction to be associated with increased intestinal permeability and mucosal mast cell activation, the specific mechanisms linking mast cell activity with altered intestinal barrier in human disease remain unclear. This review describes the role played by mast cells in control of the intestinal mucosal barrier and their contribution to digestive diseases.


1998 ◽  
Vol 274 (5) ◽  
pp. G832-G839 ◽  
Author(s):  
Aletta D. Kraneveld ◽  
Thea Muis ◽  
Andries S. Koster ◽  
Frans P. Nijkamp

Previously, it was shown that depletion and stabilization of the mucosal mast cell around the time of challenge were very effective in reducing delayed-type hypersensitivity (DTH) reactions in the small intestine of the rat. The role of mucosal mast cells in the early component of intestinal DTH reaction was further investigated in this study. In vivo small intestinal vascular leakage and serum levels of rat mast cell protease II (RMCP II) were determined within 1 h after intragastric challenge of rats that had been sensitized with dinitrobenzene 5 days before. A separate group of rats was used to study vasopermeability in isolated vascularly perfused small intestine after in vitro challenge. To investigate the effects of mast cell stabilization on the early events of the DTH reaction, doxantrazole was used. The influence of sensory nerves was studied by means of neonatal capsaicin-induced depletion of sensory neuropeptides. Within 1 h after challenge, a significant increase in vascular permeability was found in vivo as well as in vitro. This was associated with a DTH-specific increase in RMCP II in the serum, indicating mucosal mast cell activation. In addition, doxantrazole treatment and caspaicin pretreatment resulted in a significant inhibition of the DTH-induced vascular leakage and an increase in serum RMCP II. These findings are consistent with an important role for mucosal mast cells in early vascular leakage changes of intestinal DTH reactions. In addition, sensory nervous control of mucosal mast cell activation early after challenge is demonstrated.


2011 ◽  
Vol 90 (3) ◽  
pp. 337-345 ◽  
Author(s):  
Shuang Liu ◽  
Agung Endro Nugroho ◽  
Masachika Shudou ◽  
Kazutaka Maeyama

2021 ◽  
Author(s):  
Wenchuan Qi ◽  
Baitong Liu ◽  
Yilu Jiang ◽  
Xinye Luo ◽  
Zhiwei Li ◽  
...  

Abstract Selecting routine points on related meridians is widely accepted as the foundational principle of acupuncture. When the body is suffering disease or injury, corresponding acupoints are thought to be activated and manifest in several sensitized forms. Sensitized acupoints hold high clinical value as a reflection of disease activity on the body surface. Mast cells have been implicated in the process of acupoint sensitization but the underlying regulatory mechanisms remain unclear. In the present study, we evaluated ST36 as a sensitized acupoint in the monosodium iodoacetate-induced knee osteoarthritis rat model. We first confirmed sensitization at the ST36 acupoint through decreases in the acupoint mechanical pain threshold and instructively found an accompanying increase in skin mast cell degranulation. Thereafter, we used highthroughput RNA sequencing to reveal potential molecular mechanisms of acupoint sensitization. We showed that rno-miR-199a-3p was highly expressed in the sensitized ST36 acupoint and its expression was associated with mast cells. Functional experiments revealed that overexpression of rno-miR-199a-3p increased mast cell histamine release whereas inhibition of rno-miR-199a-3p decreased histamine release. Mechanistically, we established rno-miR-199a-3p acted to inhibit neural precursor cell expressed developmentally down-regulated 4 (Nedd4) protein expression through miRNA-mediated targeting of the 3’-UTR of Nedd4 mRNA. Moreover, we found ectopic expression of Nedd4 antagonized histamine release in mast cells and blocked the actions of rno-miR-199a-3p overexpression. Thus, our study establishes that mast cells participate in the process of acupoint sensitization, and further reveals a novel miRNA-based mechanism which is crucial for further understanding of acupoint sensitization and acupuncture applications.


Sign in / Sign up

Export Citation Format

Share Document