scholarly journals Intestinal Mucosal Mast Cells: Key Modulators of Barrier Function and Homeostasis

Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 135 ◽  
Author(s):  
Mercé Albert-Bayo ◽  
Irene Paracuellos ◽  
Ana M. González-Castro ◽  
Amanda Rodríguez-Urrutia ◽  
María J. Rodríguez-Lagunas ◽  
...  

The gastrointestinal tract harbours the largest population of mast cells in the body; this highly specialised leukocyte cell type is able to adapt its phenotype and function to the microenvironment in which it resides. Mast cells react to external and internal stimuli thanks to the variety of receptors they express, and carry out effector and regulatory tasks by means of the mediators of different natures they produce. Mast cells are fundamental elements of the intestinal barrier as they regulate epithelial function and integrity, modulate both innate and adaptive mucosal immunity, and maintain neuro-immune interactions, which are key to functioning of the gut. Disruption of the intestinal barrier is associated with increased passage of luminal antigens into the mucosa, which further facilitates mucosal mast cell activation, inflammatory responses, and altered mast cell–enteric nerve interaction. Despite intensive research showing gut dysfunction to be associated with increased intestinal permeability and mucosal mast cell activation, the specific mechanisms linking mast cell activity with altered intestinal barrier in human disease remain unclear. This review describes the role played by mast cells in control of the intestinal mucosal barrier and their contribution to digestive diseases.

1997 ◽  
Vol 77 (4) ◽  
pp. 1033-1079 ◽  
Author(s):  
D. D. Metcalfe ◽  
D. Baram ◽  
Y. A. Mekori

Mast cells are found resident in tissues throughout the body, particularly in association with structures such as blood vessels and nerves, and in proximity to surfaces that interface the external environment. Mast cells are bone marrow-derived and particularly depend upon stem cell factor for their survival. Mast cells express a variety of phenotypic features within tissues as determined by the local environment. Withdrawal of required growth factors results in mast cell apoptosis. Mast cells appear to be highly engineered cells with multiple critical biological functions. They may be activated by a number of stimuli that are both Fc epsilon RI dependent and Fc epsilon RI independent. Activation through various receptors leads to distinct signaling pathways. After activation, mast cells may immediately extrude granule-associated mediators and generate lipid-derived substances that induce immediate allergic inflammation. Mast cell activation may also be followed by the synthesis of chemokines and cytokines. Cytokine and chemokine secretion, which occurs hours later, may contribute to chronic inflammation. Biological functions of mast cells appear to include a role in innate immunity, involvement in host defense mechanisms against parasitic infestations, immunomodulation of the immune system, and tissue repair and angiogenesis.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Eri Takematsu ◽  
Sanjana Srinath ◽  
Michael Sherman ◽  
Andrew K Dunn ◽  
Aaron Baker

Introduction: The current standard cares for peripheral artery disease (PAD) include surgical revascularizations with bypass grafting or percutaneous interventions. However, these interventions cannot be performed in a significant portion of patients, and many do not respond to these surgical procedures. Protein therapy to stimulate the body to create new vasculature is another alternative, which is minimally invasive to patients. Stem cell factor (SCF) is a candidate protein for treating PAD, but clinical use of SCF has been limited due to toxicity related to mast cell activation. SCF also exists in a transmembrane form (tmSCF), possessing differential activities from soluble SCF and has not been explored as a therapeutic agent. Results: To develop tmSCF as a therapeutic we created tmSCF embedded in liposome or lipid nanodisc (Fig. A) . Hindlimb ischemia model on WT and ob/ob mice showed that tmSCF proteliposome (tmSCFPL) and nanodisc (tmSCFND) improved blood flow recovery significantly more than control (Fig. B, C) . Mouse model of anaphylaxis revealed that tmSCF-based therapies did not activate mast cells (Fig. D, E) . Colocalization assay of c-Kit and clathrin/caveolin revealed that mast cells preferentially use clathrin-mediated pathways to internalize SCF and caveolin-mediated pathways for tmSCF-based therapies (Fig. F, G) . Surface c-Kit internalization study on mast cells showed faster uptake of SCF in comparison to tmSCF-based therapies (Fig. H) . Previous study indicates that clathrin-mediated internalization causes increased activation of mast cells. Our studies together with the previous finding suggest that mast cell activation does not occur for tmSCF-based therapies because of the slower uptake, greater utilization of the caveolin internalization pathway and weaker activation of mast cells. Conclusions: TmSCF-based therapies can provide therapeutic benefits without off-target effects on mast cells by tuning activation with nanocarriers.


1998 ◽  
Vol 274 (5) ◽  
pp. G832-G839 ◽  
Author(s):  
Aletta D. Kraneveld ◽  
Thea Muis ◽  
Andries S. Koster ◽  
Frans P. Nijkamp

Previously, it was shown that depletion and stabilization of the mucosal mast cell around the time of challenge were very effective in reducing delayed-type hypersensitivity (DTH) reactions in the small intestine of the rat. The role of mucosal mast cells in the early component of intestinal DTH reaction was further investigated in this study. In vivo small intestinal vascular leakage and serum levels of rat mast cell protease II (RMCP II) were determined within 1 h after intragastric challenge of rats that had been sensitized with dinitrobenzene 5 days before. A separate group of rats was used to study vasopermeability in isolated vascularly perfused small intestine after in vitro challenge. To investigate the effects of mast cell stabilization on the early events of the DTH reaction, doxantrazole was used. The influence of sensory nerves was studied by means of neonatal capsaicin-induced depletion of sensory neuropeptides. Within 1 h after challenge, a significant increase in vascular permeability was found in vivo as well as in vitro. This was associated with a DTH-specific increase in RMCP II in the serum, indicating mucosal mast cell activation. In addition, doxantrazole treatment and caspaicin pretreatment resulted in a significant inhibition of the DTH-induced vascular leakage and an increase in serum RMCP II. These findings are consistent with an important role for mucosal mast cells in early vascular leakage changes of intestinal DTH reactions. In addition, sensory nervous control of mucosal mast cell activation early after challenge is demonstrated.


Blood ◽  
2004 ◽  
Vol 103 (6) ◽  
pp. 2214-2220 ◽  
Author(s):  
Brian T. Edelson ◽  
Zhengzhi Li ◽  
Loretta K. Pappan ◽  
Mary M. Zutter

Abstract Although the α2β1 integrin is widely expressed and has been extensively studied, it has not been previously implicated in mast cell biology. We observed that α2 integrin subunit-deficient mice exhibited markedly diminished neutrophil and interleukin-6 responses during Listeria monocytogenes– and zymosan-induced peritonitis. Since exudative neutrophils of wild-type mice expressed little α2β1 integrin, it seemed unlikely that this integrin mediated neutrophil migration directly. Here, we demonstrate constitutive α2β1 integrin expression on peritoneal mast cells. Although α2-null mice contain normal numbers of peritoneal mast cells, these α2-null cells do not support in vivo mast cell–dependent inflammatory responses. We conclude that α2β1 integrin provides a costimulatory function required for mast cell activation and cytokine production in response to infection.


2021 ◽  
Author(s):  
Wenchuan Qi ◽  
Baitong Liu ◽  
Yilu Jiang ◽  
Xinye Luo ◽  
Zhiwei Li ◽  
...  

Abstract Selecting routine points on related meridians is widely accepted as the foundational principle of acupuncture. When the body is suffering disease or injury, corresponding acupoints are thought to be activated and manifest in several sensitized forms. Sensitized acupoints hold high clinical value as a reflection of disease activity on the body surface. Mast cells have been implicated in the process of acupoint sensitization but the underlying regulatory mechanisms remain unclear. In the present study, we evaluated ST36 as a sensitized acupoint in the monosodium iodoacetate-induced knee osteoarthritis rat model. We first confirmed sensitization at the ST36 acupoint through decreases in the acupoint mechanical pain threshold and instructively found an accompanying increase in skin mast cell degranulation. Thereafter, we used highthroughput RNA sequencing to reveal potential molecular mechanisms of acupoint sensitization. We showed that rno-miR-199a-3p was highly expressed in the sensitized ST36 acupoint and its expression was associated with mast cells. Functional experiments revealed that overexpression of rno-miR-199a-3p increased mast cell histamine release whereas inhibition of rno-miR-199a-3p decreased histamine release. Mechanistically, we established rno-miR-199a-3p acted to inhibit neural precursor cell expressed developmentally down-regulated 4 (Nedd4) protein expression through miRNA-mediated targeting of the 3’-UTR of Nedd4 mRNA. Moreover, we found ectopic expression of Nedd4 antagonized histamine release in mast cells and blocked the actions of rno-miR-199a-3p overexpression. Thus, our study establishes that mast cells participate in the process of acupoint sensitization, and further reveals a novel miRNA-based mechanism which is crucial for further understanding of acupoint sensitization and acupuncture applications.


2020 ◽  
Vol 11 ◽  
Author(s):  
Dylan Krajewski ◽  
Stephanie H. Polukort ◽  
Justine Gelzinis ◽  
Jeffrey Rovatti ◽  
Edwin Kaczenski ◽  
...  

The thiol isomerase, protein disulfide isomerase (PDI), plays important intracellular roles during protein folding, maintaining cellular function and viability. Recent studies suggest novel roles for extracellular cell surface PDI in enhancing cellular activation and promoting their function. Moreover, a number of food-derived substances have been shown to regulate cellular PDI activity and alter disease progression. We hypothesized that PDI may have similar roles during mast cell-mediated allergic responses and examined its effects on IgE-induced mast cell activity during cell culture and food allergy. Mast cells were activated via IgE and antigen and the effects of PDI inhibition on mast cell activation were assessed. The effects of PDI blockade in vivo were examined by treating mice with the irreversible PDI inhibitor, PACMA-31, in an ovalbumin-induced model of food allergy. The role of dietary PDI modulators was investigated using various dietary compounds including curcumin and quercetin-3-rutinoside (rutin). PDI expression was observed on resting mast cell surfaces, intracellularly, and in the intestines of allergic mice. Furthermore, enhanced secretion of extracellular PDI was observed on mast cell membranes during IgE and antigen activation. Insulin turbidimetric assays demonstrated that curcumin is a potent PDI inhibitor and pre-treatment of mast cells with curcumin or established PDI inhibitors such as bacitracin, rutin or PACMA-31, resulted in the suppression of IgE-mediated activation and the secretion of various cytokines. This was accompanied by decreased mast cell proliferation, FcεRI expression, and mast cell degranulation. Similarly, treatment of allergic BALB/c mice with PACMA-31 attenuated the development of food allergy resulting in decreased allergic diarrhea, mast cell activation, and fewer intestinal mast cells. The production of TH2-specific cytokines was also suppressed. Our observations suggest that PDI catalytic activity is essential in the regulation of mast cell activation, and that its blockade may benefit patients with allergic inflammation.


Medicina ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 124
Author(s):  
Arianna Giannetti ◽  
Emanuele Filice ◽  
Carlo Caffarelli ◽  
Giampaolo Ricci ◽  
Andrea Pession

Background and Objectives: Mast cell disorders comprise a wide spectrum of syndromes caused by mast cells’ degranulation with acute or chronic clinical manifestations. Materials and Methods: In this review article we reviewed the latest findings in scientific papers about mast cell disorders with a particular focus on mast cell activation syndrome and mastocytosis in pediatric age. Results: Patients with mast cell activation syndrome have a normal number of mast cells that are hyperreactive upon stimulation of various triggers. We tried to emphasize the diagnostic criteria, differential diagnosis, and therapeutic strategies. Another primary mast cell disorder is mastocytosis, a condition with a long-known disease, in which patients have an increased number of mast cells that accumulate in different regions of the body with different clinical evolution in pediatric age. Conclusions: Mast cell activation syndrome overlaps with different clinical entities. No consensus was found on biomarkers and no clearly resolutive treatment is available. Therefore, a more detailed knowledge of this syndrome is of fundamental importance for a correct diagnosis and effective therapy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 269-269 ◽  
Author(s):  
Aditya M Mittal ◽  
Huy Tran ◽  
Varun Sagi ◽  
Aithanh Nguyen ◽  
Kathryn Luk ◽  
...  

Abstract Mast cells are in close proximity to the vasculature and cause endothelial activation, plasma extravasation, and vascular dysfunction (Gupta & Harvima, Immunol Rev 2018). Vascular dysfunction in sickle cell disease (SCD) is accompanied by increased expression of P-selectin. Treatment with Crizanlizumab, an antibody against P-selectin, led to significantly less sickle cell-related pain crises (Ataga et al., NEJM 2017) highlighting the role of endothelial P-selectin in vasoocclusive crises (VOC). Earlier studies demonstrated that mast cell activation with morphine or ischemia/reperfusion stimulates endothelial E- and/or P-selectin expression. However, it is unknown how mast cells stimulate endothelial selectin expression in SCD. Endothelial dysfunction contributes significantly to the pathobiology of SCD including VOC and may play a critical role in increased blood-brain barrier (BBB) permeability, which may contribute to stroke, another major comorbidity of SCD. One of the known triggers of endothelial dysfunction, inflammation and oxidative stress is endoplasmic reticulum (ER) stress. We hypothesize that in a sickle microenvironment, mediators derived from activated mast cells stimulate endothelial P-selectin expression via ER stress leading to increased BBB permeability. We examined the ability of mast cells to stimulate P-selectin expression and BBB permeability via ER stress in a sickle microenvironment. We isolated MCs from HbAA-BERK and HbSS-BERK, control and sickle mice, respectively; incubated them in vitro and collected mast cell conditioned media (MCCM) from HbAA MCs and HbSS MCs. Normal mouse brain microvascular endothelial cells (mBMECs) were treated with unconditioned MCCM, HbAA MCCM, or HbSS MCCM to examine the effect of mast cell activation on endothelium. We observed increased mast cell activity in HbSS mice evinced by significantlyhigher plasma and skin histamine levels, compared to HbAA mice (p< 0.02 for both). Mast cells from HbSS mouse skin showed significantly increased expression of histamine compared to HbAA skin mast cells (p< 0.04). mBMECs incubated with HbAA and HBSS MCCM exhibited about 3- and 6-fold fold increases in P-selectin expression, compared to unconditioned culture medium, respectively (p< 0.0001 for both). Therefore, mast cells in culture release substances that stimulate P-selectin expression which is further increased by mast cells from sickle (HbSS) microenvironment. Preincubation of mBMEC with 5 microM salubrinal, an inhibitor of dephosphorylation of elongation initiation factor-a, which reduces ER stress, significantly inhibited HbSS MCCM-induced P-selectin expression on mBMEC (p< 0.0001) to the level induced by HbAA-MCCM. In contrast, salubrinal did not inhibit HbAA-MCCM-induced P-selectin expression on mBMEC, suggesting that in a sickle microenvironment mast cells contribute to P-selectin expression via ER stress. We next examined mast cell activity on endothelial permeability in vitro on mBMEC monolayers and in vivo in the brain of HbSS mice. mBMECs incubated with HbSS MCCM showed a significant increase in Evans blue leakage compared to unconditioned or HbAA MCCM (p<0.0001 for both), which was inhibited by preincubation of mBMEC with 5 microM salubrinal prior to incubation with HbSS MCCM (p< 0.0001). In vivo female HbSS mice showed a significantly increased leakage in the brain of FITC-dextran injected through tail vein compared to HbAA mice (p< 0.01). HbSS mice treated with 1 mg/kg salubrinal demonstrated inhibition of FITC-dextran leakage in the brain compared to vehicle (p< 0.05). Thus, ER stress contributes to increased BBB permeability in HbSS mice. We observed activated degranulating mast cells in the brain parenchyma of HbSS mice. In HbAA mice, quiescent mast cells were confined to the meninges of the brain but not seen in the parenchyma. Together, these data suggest that mast cell activation contributes to BBB permeability in a sickle microenvironment via ER stress-mediated P-selectin expression. In turn, this mast cell-initiated activity in the brain may underlie the pathobiology of stroke in SCD. Inhibitors of mast cells and P-selectin have been tested clinically leading to reduced VOC in SCD without known adverse events. Therefore, mast cell activation-induced P-selectin via ER stress may serve as a treatable target for reducing the risk of stroke in SCD. Disclosures Gupta: Novartis: Honoraria; Tau tona: Consultancy.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Huaping Xu ◽  
Xiaoyun Shi ◽  
Xin Li ◽  
Jiexin Zou ◽  
Chunyan Zhou ◽  
...  

AbstractThe existence of the neural control of mast cell functions has long been proposed. Mast cells (MCs) are localized in association with the peripheral nervous system (PNS) and the brain, where they are closely aligned, anatomically and functionally, with neurons and neuronal processes throughout the body. They express receptors for and are regulated by various neurotransmitters, neuropeptides, and other neuromodulators. Consequently, modulation provided by these neurotransmitters and neuromodulators allows neural control of MC functions and involvement in the pathogenesis of mast cell–related disease states. Recently, the roles of individual neurotransmitters and neuropeptides in regulating mast cell actions have been investigated extensively. This review offers a systematic review of recent advances in our understanding of the contributions of neurotransmitters and neuropeptides to mast cell activation and the pathological implications of this regulation on mast cell–related disease states, though the full extent to which such control influences health and disease is still unclear, and a complete understanding of the mechanisms underlying the control is lacking. Future validation of animal and in vitro models also is needed, which incorporates the integration of microenvironment-specific influences and the complex, multifaceted cross-talk between mast cells and various neural signals. Moreover, new biological agents directed against neurotransmitter receptors on mast cells that can be used for therapeutic intervention need to be more specific, which will reduce their ability to support inflammatory responses and enhance their potential roles in protecting against mast cell–related pathogenesis.


2013 ◽  
Vol 305 (5) ◽  
pp. G383-G391 ◽  
Author(s):  
Jacco J. de Haan ◽  
M'hamed Hadfoune ◽  
Tim Lubbers ◽  
Caroline Hodin ◽  
Kaatje Lenaerts ◽  
...  

Nutritional stimulation of the cholecystokinin-1 receptor (CCK-1R) and nicotinic acetylcholine receptor (nAChR)-mediated vagal reflex was shown to reduce inflammation and preserve intestinal integrity. Mast cells are important early effectors of the innate immune response; therefore modulation of mucosal mast cells is a potential therapeutic target to control the acute inflammatory response in the intestine. The present study investigates intestinal mast cell responsiveness upon nutritional activation of the vagal anti-inflammatory reflex during acute inflammation. Mucosal mast cell degranulation was induced in C57/Bl6 mice by administration of Salmonella enterica LPS. Lipid-rich enteral feeding prior to LPS significantly decreased circulatory levels of mouse mast cell protease at 30 min post-LPS compared with isocaloric low-lipid nutrition or fasting. CCK-1R blockage reversed the inhibitory effects of lipid-rich feeding, whereas stimulation of the peripheral CCK-1R mimicked nutritional mast cell inhibition. The effects of lipid-rich nutrition were negated by nAChR blockers chlorisondamine and α-bungarotoxin and vagal intestinal denervation. Accordingly, release of β-hexosaminidase by MC/9 mast cells following LPS or IgE-ovalbumin complexes was dose dependently inhibited by acetylcholine and nicotine. Application of GSK1345038A, a specific agonist of the nAChR α7, in bone marrow-derived mast cells from nAChR β2−/− and wild types indicated that cholinergic inhibition of mast cells is mediated by the nAChR α7 and is independent of the nAChR β2. Together, the present study reveals mucosal mast cells as a previously unknown target of the nutritional anti-inflammatory vagal reflex.


Sign in / Sign up

Export Citation Format

Share Document