Speculations on the Origin of Low Frequency Arctic Ocean Noise

1988 ◽  
pp. 513-532 ◽  
Author(s):  
Ira Dyer
1978 ◽  
Vol 64 (S1) ◽  
pp. S46-S46
Author(s):  
J. Zittel ◽  
G. W. Shepard ◽  
I. Dyer ◽  
A. B. Baggeroer

2004 ◽  
Vol 17 (23) ◽  
pp. 4485-4497 ◽  
Author(s):  
I. V. Polyakov ◽  
G. V. Alekseev ◽  
L. A. Timokhov ◽  
U. S. Bhatt ◽  
R. L. Colony ◽  
...  

Abstract Recent observations show dramatic changes of the Arctic atmosphere–ice–ocean system, including a rapid warming in the intermediate Atlantic water of the Arctic Ocean. Here it is demonstrated through the analysis of a vast collection of previously unsynthesized observational data, that over the twentieth century Atlantic water variability was dominated by low-frequency oscillations (LFO) on time scales of 50–80 yr. Associated with this variability, the Atlantic water temperature record shows two warm periods in the 1930s–40s and in recent decades and two cold periods earlier in the century and in the 1960s–70s. Over recent decades, the data show a warming and salinification of the Atlantic layer accompanied by its shoaling and, probably, thinning. The estimate of the Atlantic water temperature variability shows a general warming trend; however, over the 100-yr record there are periods (including the recent decades) with short-term trends strongly amplified by multidecadal variations. Observational data provide evidence that Atlantic water temperature, Arctic surface air temperature, and ice extent and fast ice thickness in the Siberian marginal seas display coherent LFO. The hydrographic data used support a negative feedback mechanism through which changes of density act to moderate the inflow of Atlantic water to the Arctic Ocean, consistent with the decrease of positive Atlantic water temperature anomalies in the late 1990s. The sustained Atlantic water temperature and salinity anomalies in the Arctic Ocean are associated with hydrographic anomalies of the same sign in the Greenland–Norwegian Seas and of the opposite sign in the Labrador Sea. Finally, it is found that the Arctic air–sea–ice system and the North Atlantic sea surface temperature display coherent low-frequency fluctuations. Elucidating the mechanisms behind this relationship will be critical to an understanding of the complex nature of low-frequency variability found in the Arctic and in lower-latitude regions.


2018 ◽  
Author(s):  
Scott Veirs ◽  
Val Veirs ◽  
Rob Williams ◽  
Michael Jasny ◽  
Jason Wood

Underwater noise pollution from ships is a chronic, global stressor impacting a wide range of marine species. Ambient ocean noise levels nearly doubled each decade from 1963-2007 in low-frequency bands attributed to shipping, inspiring a pledge from the International Maritime Organization to reduce ship noise and a call from the International Whaling Commission for member nations to halve ship noise within a decade. Our analysis of data from 1,582 ships reveals that half of the total power radiated by a modern fleet comes from just 15% of the ships, namely those with source levels above 179 dB re 1 μPa @ 1 m. We present a range of management options for reducing ship noise efficiently, including incentive-based programs, without necessarily regulating the entire fleet.


1986 ◽  
pp. 387-395 ◽  
Author(s):  
Frederick R. DiNapoli ◽  
Robert H. Mellen

2014 ◽  
Vol 135 (4) ◽  
pp. 2306-2306 ◽  
Author(s):  
David Browning ◽  
Peter D. Herstein ◽  
Peter M. Scheifele ◽  
Raymond W. Hasse

2018 ◽  
Author(s):  
Scott Veirs ◽  
Val Veirs ◽  
Rob Williams ◽  
Michael Jasny ◽  
Jason Wood

Underwater noise pollution from ships is a chronic, global stressor impacting a wide range of marine species. Ambient ocean noise levels nearly doubled each decade from 1963-2007 in low-frequency bands attributed to shipping, inspiring a pledge from the International Maritime Organization to reduce ship noise and a call from the International Whaling Commission for member nations to halve ship noise within a decade. Our analysis of data from 1,582 ships reveals that half of the total power radiated by a modern fleet comes from just 15% of the ships, namely those with source levels above 179 dB re 1 μPa @ 1 m. We present a range of management options for reducing ship noise efficiently, including incentive-based programs, without necessarily regulating the entire fleet.


Sign in / Sign up

Export Citation Format

Share Document