The Light Dependent Ammonia Metabolism in Wheat and Maize Leaves

Author(s):  
M. G. Berger ◽  
R. E. Klaus ◽  
H. P. Fock
1991 ◽  
Vol 81 (4) ◽  
pp. 462-466 ◽  
Author(s):  
Maria Fabiana Drincovich ◽  
Alberto A. Iglesias ◽  
Carlos S. Andreo

2015 ◽  
Vol 41 (4) ◽  
pp. 601 ◽  
Author(s):  
Yun-Pu ZHENG ◽  
Ming XU ◽  
Jian-Shu WANG ◽  
Shuai QIU ◽  
He-Xin WANG

Author(s):  
Barbara Ludwig Navarro ◽  
Lucia Ramos Romero ◽  
María Belén Kistner ◽  
Juliana Iglesias ◽  
Andreas von Tiedemann

AbstractNorthern corn leaf blight (NCLB) is one of the most important diseases in maize worldwide. It is caused by the fungus Exserohilum turcicum, which exhibits a high genetic variability for virulence, and hence physiological races have been reported. Disease control is based mainly on fungicide application and host resistance. Qualitative resistance has been widely used to control NCLB through the deployment of Ht genes. Known pathogen races are designated according to their virulence to the corresponding Ht gene. Knowledge about of E. turcicum race distribution in maize-producing areas is essential to develop and exploit resistant genotypes. Maize leaves showing distinct elliptical grey-green lesions were collected from maize-producing areas of Argentina and Brazil, and 184 monosporic E. turcicum isolates were obtained. A total of 66 isolates were collected from Argentina during 2015, 2018 and 2019, while 118 isolates from Brazil were collected during 2017, 2018 and 2019. All isolates were screened on maize differential lines containing Ht1, Ht2, Ht3 and Htn1 resistance genes. In greenhouse experiments, inoculated maize plants were evaluated at 14 days after inoculation. Resistance reaction was characterized by chlorosis, and susceptibility was defined by necrosis in the absence of chlorosis. The most frequent race was 0 in both Argentina (83%) and Brazil (65%). Frequencies of race 1 (6% and 24%) and race 23N (5% and 10%) were very low in Argentina and Brazil, respectively. The high frequency of race 0 isolates provides evidence that qualitative resistance based on the tested Ht genes is not being used extensively in Argentina and Brazil to control NCLB. This information may be relevant for growers and breeding programs as the incidence of NCLB is increasing in both countries.


2021 ◽  
Author(s):  
Chenghao Zhao ◽  
Shuwen Ji ◽  
Chao Ge ◽  
Yujing Su ◽  
Zhongxian Shi ◽  
...  
Keyword(s):  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Benedikt Frieg ◽  
Boris Görg ◽  
Holger Gohlke ◽  
Dieter Häussinger

Abstract Glutamine synthetase (GS) in the liver is expressed in a small perivenous, highly specialized hepatocyte population and is essential for the maintenance of low, non-toxic ammonia levels in the organism. However, GS activity can be impaired by tyrosine nitration of the enzyme in response to oxidative/nitrosative stress in a pH-sensitive way. The underlying molecular mechanism as investigated by combined molecular simulations and in vitro experiments indicates that tyrosine nitration can lead to a fully reversible and pH-sensitive regulation of protein function. This approach was also used to understand the functional consequences of several recently described point mutations of human GS with clinical relevance and to suggest an approach to restore impaired GS activity.


Sign in / Sign up

Export Citation Format

Share Document