Coupled diffusion of temperature and moisture

1986 ◽  
pp. 17-45 ◽  
Author(s):  
G. C. Sih ◽  
J. G. Michopoulos ◽  
S. C. Chou
Keyword(s):  
1997 ◽  
Vol 496 ◽  
Author(s):  
S. B. Biner

ABSTRACTIn this study, the evolution of the stress-states ahead of the penny shaped internal cracks in both spherical and disk shaped ReNi5 particles during hydrogen charging and discharging cycles were investigated using coupled diffusion/deformation FEM analyses. The results indicate that large tensile stresses, on the order of 20–50% of the modulus of elasticity, develop in the particles. The disk shaped particles, in addition to having faster charging/discharging cycles, may offer better resistance to fracture than the spherical particles.


2021 ◽  
Vol 225 ◽  
pp. 01010
Author(s):  
Polina Grigoreva ◽  
Elena Vilchevskaya ◽  
Vladimir Polyanskiy

In this work, the diffusion equation for the gas-solid system is revised to describe the non-uniform distribution of hydrogen in steels. The first attempt to build a theoretical and general model and to describe the diffusion process as driven by a chemical potential gradient is made. A linear elastic solid body and ideal gas, diffusing into it, are considered. At this stage, we neglect any traps and non-linear effects. The coupled diffusion-elastic boundary problem is solved for the case of the cylinder under the tensile loads. The obtained results correspond to the experimental ones. Based on them, the assumptions about the correctness of the model and its further improvement are suggested.


2011 ◽  
Vol 309-310 ◽  
pp. 19-28 ◽  
Author(s):  
Leonid Klinger ◽  
Eugen Rabkin

A grain boundary interdiffusion in a semi-infinite bicrystal under the conditions of negligible bulk diffusion is considered. We show that the inequality of intrinsic grain boundary diffusion coefficients of the two components leads to plating out of additional material at the grain boundary in the form of extra material wedge, which generates an elastic stress field in the vicinity of the grain boundary. We solved a coupled diffusion/elasticity problem and determined the time-dependent stress field and concentration distribution in the vicinity of the grain boundary.


Automatica ◽  
2018 ◽  
Vol 94 ◽  
pp. 307-314 ◽  
Author(s):  
Alexander Schaum ◽  
Thomas Meurer ◽  
Jaime A. Moreno

Author(s):  
Theodore Zirkle ◽  
Luke Costello ◽  
Ting Zhu ◽  
David L. McDowell

Abstract The diffusion of hydrogen in metals is of interest due to the deleterious influence of hydrogen on material ductility and fracture resistance. It is becoming increasingly clear that hydrogen transport couples significantly with dislocation activity. In this work, we employ a coupled diffusion-crystal plasticity model to incorporate hydrogen transport associated with dislocation sweeping and pipe diffusion in addition to standard lattice diffusion. Moreover, we consider generation of vacancies via plastic deformation and stabilization of vacancies via trapping of hydrogen. The proposed hydrogen transport model is implemented in a physically-based crystal viscoplasticity framework to model the interaction of dislocation substructure and hydrogen migration. In this study, focus is placed on hydrogen transport and trapping within the intense deformation field of a crack tip plastic zone. We discuss the implications of the model results in terms of constitutive relations that incorporate hydrogen effects on crack tip field behavior and enable exploration of hydrogen embrittlement mechanisms.


Sign in / Sign up

Export Citation Format

Share Document